Gc-helper.ru

ГК Хелпер
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Какое действие электрического тока используется в электрической лампе накаливания

Знакомство с лампами накаливания

Определение
Лампа накаливания — источник света, преобразующий энергию проходящего по спирали лампы электрического тока в тепловую и световую. По физической природе различают два вида излучения: тепловое и люминесцентное.
Тепловым называют световое излучение, возникающее
при нагревании тел. На использовании теплового излучения основано свечение электрических ламп накаливания.

Достоинства и недостатки

Достоинства ламп накаливания:
• при включении они зажигаются практически мгновенно;
• имеют незначительные размеры;
• стоимость их невысока.

Основные недостатки ламп накаливания:
• лампы обладают слепящей яркостью, отрицательно отражающейся на зрении человека, поэтому требуют применения соответствующей арматуры, ограничивающей ослепление;
• обладают незначительным сроком службы (порядка 1000 часов);
• срок службы ламп существенно снижается при повышении напряжения питающей электросети.

Световой коэффициент полезного действия ламп накаливания, определяемый как отношение мощности лучей видимого спектра к мощности потребляемой от электрической сети, весьма мал и не превышает 4%.

Таким образом, основной недостаток ламп накаливания — низкая светоотдача. Ведь лишь незначительная часть потребляемой ими электрической энергии превращается в энергию видимых излучений, остальная часть энергии переходит в тепло, излучаемое лампой.

Принцип действия.

Принцип действия ламп накаливания основан на преобразовании электрической энергии, проходящей через нить, в световую. Температура разогретой нити достигает 2600. 3000 «С. Но нить лампы не плавится, потому что температура плавления вольфрама (3200. 3400 °С) превышает температуру накала нити. Спектр ламп накаливания отличается от спектра дневного света преобладанием желтого и красного спектра лучей.
Колбы ламп накаливания вакуумируются или заполняются инертным газом, в среде которого вольфрамовая нить накала не окисляется: азотом; аргоном; криптоном; смесью азота, аргона, ксенона.

Устройство и работа ламп накаливания

Лампа накаливания (рис.) светится потому, что нить из тугоплавкой вольфрамовой проволоки раскаляется проходящим через нее током. Чтобы спираль быстро не перегорела, из стеклянного баллона выкачан воздух либо баллон заполнен инертным газом. Спираль укреплена на электродах. Один из них припаян к металлической гильзе цоколя, другой — к металлической контактной пластине. Их разделяет изоляция. Один из проводов присоединен к гильзе цоколя, а другой — к контактной пластине, как показано на рис. Тогда ток, преодолевая электрическое сопротивление НИТИ, раскаляет ее.

Обозначения ламп накаливания

В обозначении ламп накаливания буквы означают: В — вакуумная; Г — газонаполненная; Б — биспиральная; БК — биспиральная криптоновая (имеет повышенную светоотдачу и меньшие размеры по сравнению с лампами В, Б и Г, но стоит дороже); ДБ — диффузная (с матовым отражательным слоем внутри колбы); МО — местного освещения.

За буквами следуют две группы цифр. Они указывают диапазон напряжений и мощность лампы.

Пример. «В 220. 230-25» обозначает напряжение 220. 230 В, мощность 2-5 Вт. В обозначении может также присутствовать дата выпуска лампы, например, IX 2005.

Лампы мощностью до 150 Вт выпускаются: в бесцветных прозрачных баллонах (световой поток ламп не уменьшается); в матированных изнутри баллонах (световой поток ламп уменьшается на 3%); в опаловых колбах; окрашенных в молочный цвет баллонах (световой поток ламп уменьшается на 20%).
Лампы мощностью, до 200 Вт изготавливают как с резьбовыми, так и со штифтовыми нормальными цоколями. Лампы мощностью более 200 Вт выпускаются только с резьбовыми цоколями. Лампы мощностью более 300 Вт выпускаются с цоколем диаметром 40 мм.

Примеры исполнения стандартных ламп накаливания

Примеры исполнения ламп накаливания приведены на рис. 2. На рис. 2.а,б — лампы одинаковой мощности, но на рис. 2.а — газонаполненная с аргоновым, а на рис. 2.б — с криптоновым наполнителем (криптоновая). Размеры криптоновой лампы меньше. Лампа на рис. 2.в напоминает свечу. Такие лампы часто применяют в люстрах и настенных светильниках. На рис. 2.г,д,е изображены, соответственно, биспиральная, биспиральная криптоновая, и зеркальная лампы.

Лампа накаливания: характеристики и особенности.

Лампа накаливания – самая дешевая из представленных на рынке осветительных приборов. Несмотря на активную пропаганду энергосберегающих приборов, многие люди продолжают пользоваться этим надежным электрическим источником света.

Устройство и принцип работы.

С начала XX века устройство лампы практически не изменилась. Она состоит из нескольких элементов:

  • стеклянная колба;
  • инертный газ;
  • вольфрамовая нить накаливания;
  • держатель для нити накаливания;
  • токовводящие электроды;
  • предохранитель;
  • цоколь.

Колба герметизирует и защищает нить накала от воздействия атмосферы. Для изготовления источника света с вольфрамовой спиралью обычно используют известковое стекло.

В качестве инертного газа чаще всего применяют недорогую смесь азота и аргона, чистый аргон или криптон.

Тело накаливания для бытовых лампочек изготавливается из вольфрамовой проволоки, которую закручивают в спираль. Это делают для уменьшения размера изделия и увеличения площади излучения.

В качестве держателей для нити накаливания применяют молибденовые крючки.

Часто конструкцией предусмотрен предохранитель. Он состоит из ферроникелевого сплава, который вваривается в один из токовводящих электродов. Назначение предохранителя – предотвратить взрыв колбы при перегорании нити накаливания.

Цоколь состоит из металлического корпуса, стеклянного изолятора и токопроводящего контакта.

Принцип работы лампы достаточно прост. Свечение возникает благодаря прохождению электрического тока через нить накаливания. Чтобы световое излучение стало видимым для человеческого глаза, спираль должна нагреться до температуры 570°С. А рабочая температура нити накала достигает 3000°С. При нажатии на выключатель вольфрамовая спираль начинает нагреваться и светиться.

Читать еще:  Схема кнопочного выключателя настольной лампы

Почему их называют лампами Ильича?

За этим бытовым осветительным прибором на территории нашей страны закрепилось название лампа Ильича. Не каждый светильник достоин такого имени. Лишь голую лампочку на проводе без плафона можно назвать именем Ленина. Дело в том, что одной из первых задач молодой советской власти была электрификация страны. В 1920 году Владимир Ильич Ленин приехал в деревню Кашино на запуск электростанции. Там он побеседовал с крестьянами, сфотографировался с ними и провел митинг. Это, казалось бы, рядовое событие, нашло отражение в советской литературе и кино. А простой светильник, свисающий на проводе с потолка, стали называть лампой Ильича. Позже этот термин приобрел иронический оттенок, как пример проблемы, решенной на скорую руку.

Виды ламп накаливания, область применения и электрические характеристики.

Классификация данных осветительных приборов.

  1. Общего назначения. Предназначены для общего, местного и декоративного освещения в домах и офисах.
  2. Местного освещения. Подобны предыдущей группе, но с низким напряжением (12, 24, 36 В). Применяются для подсветки рабочих мест, в том числе и на специальных станках.
  3. Декоративные модели. Изготавливаются со специальными фигурными колбами (в виде свечей, шаров и др.). Применяются для украшения интерьера в квартирах и общественных зданиях.
  4. Иллюминационные. Выпускаются с ярко окрашенными колбами. Имеют малую мощность. Применяются в иллюминационных установках.
  5. Сигнальные. Прибор малой мощности, но долгого срока службы. Используются в светосигнальных устройствах.
  6. Зеркальные. Изготавливаются с колбой специальной формы, покрытой отражающим слоем из алюминия. Применяются для локализации местного освещения в определенную точку.
  7. Транспортные. Предназначены для различных видов транспорта. Выпускаются с высокой механической и вибрационной стойкостью. Имеют специальный цоколь.
  8. Лампы для оптических приборов (измерительных, медицинских и др.).
  9. Прожекторные лампы. Имеют большую мощность (до 10кВт) и световую отдачу.
  10. Специальные:
  • коммутаторные (миниатюрные, маломощные);
  • фотолампы (сейчас практически не используются);
  • проекционные (для кинопроекторов);
  • двухнитевые и лампы-фары для автомобилей, самолетов и железнодорожных светофоров;
  • нагревательные и лампы специального спектра излучения для различной техники (принтеры, сушильные камеры и др.).

Номенклатура осветительных приборов определяет их характеристики.

  1. Диапазон мощности составляет от 0,1 Вт до 23 кВт. Для бытовых лампочек интервал значительно уже: от 15 до 150 Вт.
  2. Цветовая температура находится в интервале от 2100 до 3000 К, что весьма близко к естественному солнечному спектру.
  3. Коэффициент полезного действия у ламп накаливания довольно низкий: примерно 5%. Это обусловлено тем, что большая часть электроэнергии расходуется на тепловой нагрев нити накаливания и невидимое глазу инфракрасное излучение.
  4. При работе осветительный прибор не требует дополнительных устройств для ограничения тока. Он подключается напрямую к электрической сети. Это связано со свойствами вольфрама. Он имеет положительный коэффициент температурного расширения. Значит, с ростом температуры увеличивается электрическое удельное сопротивление: стабилизация потребляемой мощности осветительного пробора достигается автоматически.
  5. Световой поток или яркость свечения у лампы накаливания зависит от мощности. Для бытовых приборов он находится в рамках 90−2200 лм. Световая отдача при этом составляет 9−15 лм/Вт.
  6. Индекс цветопередачи Rа 100. Следовательно, цвета предметов не искажаются.
  7. Важной для потребителя характеристикой является размер и тип цоколя лампы. Чаще всего у бытовых осветительных приборов встречается резьбовой цоколь. Кроме него выпускают лампы со штифтовым одно- или двухконтактным цоколем. В зависимости от размера в Европе выпускают цоколи Е14, Е27 и Е40. Цифра соответствует диаметру цоколя в миллиметрах. В странах с меньшим напряжением сети (110В) лампы меньше. Цоколи для них имеют размеры Е12, Е17, Е26 и Е39.

Преимущества и недостатки.

Достоинств у лампы накаливания больше, чем недостатков.

  • Низкая цена осветительного прибора. Дешевле пока не производят.
  • Небольшой размер, эргономичная форма.
  • Низкая чувствительность к перепадам напряжения.
  • Моментальное свечение при включении в сеть.
  • Не вредно для глаз: мерцание человеческим глазом не фиксируется.
  • Возможность использования димеров – регуляторов яркости.
  • Спектр света максимально близок к естественному солнечному освещению.
  • Свечение не искажает цвета предметов.
  • Постоянный спектр излучения.
  • Надежность при работе в условиях, отличающихся от нормальных: низкие или высокие температуры, конденсат в атмосфере.
  • Широкий диапазон рабочих напряжений.
  • Легкая и безопасная утилизация.
  • Простота электрической схемы. Лампа подключается напрямую к сети без дополнительных регулирующих приборов.
  • Устойчивость к ионизирующей радиации и электромагнитным импульсам.
  • Не создает помех для радиочастот.
  • Не гудит при работе.
  • Может работать и от переменного, и от постоянного тока; не зависит от полярности.
  • Невысокий уровень ультрафиолетового излучения.
  • Маленький срок службы.
  • Невысокая световая отдача, которая зависит от напряжения.
  • Низкий коэффициент полезного действия: не более 5%.
  • Пожароопасность из-за сильного теплового нагрева колбы.
  • Хрупкость стеклянной колбы.
  • Возможность взрыва колбы.
  • Высокое потребление электроэнергии по сравнению с другими типами ламп.

Итоги.

Лампы накаливания служили человеку верой и правдой на протяжении всего XX века. В нынешнем столетии на смену приходят светодиодные и люминесцентные осветительные приборы. В нашей стране в рамках борьбы за энергоэффективность приняты программы, которые стимулируют развитие производства более современных источников света. Многие россияне уже отказались от использования ламп накаливания в своих квартирах. Тем не менее, некоторые их достоинства неповторимы. Например, для фото- и кинопроизводства незаменима высокая цветопередача. Многие специальные осветительные приборы пока работают только по старой технологии. Кто-то просто бережет свои глаза и использует лампу Ильича. А для помещений с кратковременным включением света раз в неделю лампа накаливания и вовсе самый экономически обоснованный вариант. Выбор остается за конкретным потребителем!

Читать еще:  Лампа выключатель розетка кабель это

История электрической лампочки

Электрический свет для современного человека воспринимается обыденным явлением. Трудно представить, что лампа накаливания появилась сравнительно недавно — менее 150 лет назад. Доступным прибор стал значительно позже. История создания электрической лампочки полна интересных фактов и заслуживает внимательного изучения.

Предпосылки создания лампочки

Патент на создание лампы накаливания принадлежит американскому предпринимателю Томасу Эдисону. Исторические факты указывают на прототип современной лампочки, созданный русским учёным Александром Лодыгиным.

Все значимые для электрификации открытия происходили в конце XIX века. Чем же пользовалось человечество до этого изобретения?

■ Первым источником света для закрытых помещений являлись напольные костры. На их смену пришли закрытые решетчатые кувшины с тлеющими углями внутри. Первобытные изобретения были крайне опасными: пожары и высокая задымленность были причинами увечий и смертей. Поэтому наши предки озаботились созданием подконтрольного освещения.

■ Древний Египет — родина первой масляной лампы или лампы Дендеры. Прибор использовался во многих храмах и представлял собой высокую колонну из песчаника, наполненную внутри раствором, который поджигали.

■ Жители Древнего Рима в качестве светильников использовали расписные вазы разных форм и размеров. В них также заливали масло. Способ был распространенным, но довольно дорогим из-за стоимости масел.

■ Конструкцию масляной лампы довели до совершенства в XVII — XIX веках: сначала была создана система непрерывной подпитки фитиля маслом, затем — особая форма емкости из стекла, безопасная и хорошо распространяющая свет.

■ Повсеместно использовались лампады — миниатюрные масляные лампы с открытым огнем.

■ Бедные семьи освещали свои дома лучинами — тлеющими длинными щепками от больших бревен.

■ В Средневековье стали пользоваться прототипом современных свечей — натопленной массой из жира или воска, в которую помещались волосы или нити в качестве фитилей.

■ Традиционные цилиндрические свечи появились не ранее XV века. Их изготавливали из воска, парафина или обычного сала. Они были менее затратными и более безопасными в использовании, но для освещения даже небольшого помещения их требовалось огромное количество.

■ В XVIII — XIX веках разрабатывали два типа освещения: газовое и керосиновое. Его использовали для улиц и домов.

Ученые и технологи многих стран пытались найти способ создания источника света: надежного, безопасного и длительного в использовании. Обнаружение электричества как особого вида энергии дало необходимое направление.

Дуговые лампы как первый источник электрического света

Принцип работы обычной лампочки заключается в получении электроэнергии и преобразовании ее в свет. Впервые он был использован при разработке электродуговых ламп.

В начале XIX века в России при проведении ряда экспериментов была замечена кратковременная яркая вспышка в виде дуги между двумя электродами. Требовалось очертить пространство вокруг них, чтобы увеличить время появления света.

Работу над проблемой начали электротехники Чиколев В.Н. и Яблочков П.Н.. Их электромагнитный регулятор оказался механически сложным и требовал доработок.

Во Франции в 1876 году создается «свеча Яблочкова» — первая дуговая лампа. Это стеклянный сосуд с угольными стержнями и изолятором между ними. Такая лампа была удобна в использовании и работала около 2 часов.

Первая электрическая лампочка

Знакомая многим современная лампа накаливания появилась в 1879 году, хотя ее прототипы создавались гораздо раньше. Хронология работы над созданием прибора:

  1. Великобритания, 1820 год. Создан стеклянный сосуд с платиновой проволокой внутри, пропускающей ток. Изобретение Уоррена де ла Рю не получило распространения.
  2. США, 1854 год. Широкой публике демонстрируется вакуумный сосуд с бамбуковой нитью внутри. При подаче тока изобретение Генриха Гебеля работает около 200 часов. Это первый источник электрического света, служащий так долго.
  3. Россия, 1872 год. Александр Лодыгин работает над созданием герметичного стеклянного шара с угольной палочкой внутри. Позже он пробует разные типы наполнения и считает наиболее успешным вариантом вольфрамовую нить.
  4. С 1875 по 1878 годы совершенствуется внешний вид лампы и разрабатывается принцип восстановления сгораемого стержня (ученые Дидрихсон В. Ф., Булыгин Н. П., Соун Д.).
  5. США, 1879 год. Томас Эдисон получает патент на лампу накаливания. Технологическая корпорация General Electric начинает разработку и массовый выпуск не только лампочек, но и отдельно цоколей, выключателей, патронов, предохранителей и т. п. Первые приборы служили не больше 40 часов, но технология постоянно совершенствовалась.

Спор о том, кто первый создал лампочку, не прекращается и сегодня. И с профессиональной, и с этической, и с юридической сторон находятся различные аргументы и доводы в пользу преимущества российских или американских инженеров. Исторические факты подсказывают, что лампочка — совместный продукт многих гениальных исследователей, каждый из которых внес свой вклад в развитие этого источника света.

Интересные факты

■ Изобретателя Яблочкова П. Н. озарила идея о простом механизме работы дуговой лампы, когда он обедал в парижском кафе и следил за официантами, сервировавшими столы. Чтобы электроды в лампе сгорали одинаково, их нужно располагать параллельно — также как кладут столовые приборы.

Читать еще:  Неоновые лампы ток потребления 1

■ В России тестовое применение электрических ламп было начато с двух столиц — Москвы и Санкт-Петербурга. Освещение по всей стране стало проводиться в начале XX века при Ленине В. И. по плану всеобщей электрификации. Отсюда пошло народное название прибора — «лампочка Ильича».

■ Форма лампочки и цоколя — это посчитанный с математической точностью и отлаженный механизм. Именно такой размер определяет равномерное нагревание нити внутри корпуса и длительный срок эксплуатации.

■ Считается, что в одной лампе накаливания содержится минимум 7 разных металлов.

■ Самая долговечная лампочка находится в Калифорнии и работает более 100 лет с минимальным количеством выключений.

Создание электрической лампочки — один из символов технического прогресса и знаковое событие в истории человечества. Трудно представить жизнь без теплого искусственного света. Конечно, светодиодные и энергосберегающие лампы вытесняют привычную грушевидную лампочку на современном рынке, но, по прогнозам специалистов, стандартная лампа накаливания останется в домах еще минимум на полвека.

Какое действие электрического тока используется в электрической лампе накаливания

Электрический ток — это упорядоченное движение заряженных частиц. Для того чтобы в проводнике существовал электрический ток, необходимы два условия: 1) наличие свободных заряженных частиц, 2) электрическое поле, которое создаёт их направленное движение. Проходя по цепи, происходит действие электрического тока (тепловое, магнитное, химическое).

При существовании тока в разных средах: в металлах, жидкостях, газах — электрический заряд переносится разными частицами. В металлах этими частицами являются электроны, в жидкостях заряд переносится ионами, в газах — электронами, положительными и отрицательными ионами.

Дистиллированная вода не проводит электрический ток, поскольку она не содержит свободных зарядов. Если в воду добавить поваренную соль или медный купорос, то в ней появятся свободные заряды, и она станет проводником электрического тока.

Газы в обычных условиях тоже не проводят электрический ток, так как в них нет свободных зарядов. Однако если в воздушный промежуток между двумя металлическими пластинами, соединёнными с источником тока, внести зажжённую спичку или спиртовку, то газ станет проводником и гальванометр зафиксирует протекание тока по цепи.

Постоянный электрический ток

Постоянный электрический ток — это электрический ток, который с течением времени не изменяется по величине и направлению. Постоянный ток является разновидностью однонаправленного тока (англ. direct current), т.е. тока, не изменяющий своего направления. Часто можно встретить сокращения DC от первых букв англ. слов, или символом по ГОСТ 2.721-74.

На рисунке красным цветом изображён график постоянного тока. По горизонтальной оси отложен масштаб времени t, а по вертикальной — масштаб тока I или электрического напряжения U. Как видно, график постоянного тока представляет собой прямую линию, параллельную горизонтальной оси (оси времени).

При постоянном токе через каждое поперечное сечение проводника в единицу времени протекает одинаковое количество электричества (электрических зарядов). Постоянный электрический ток — это постоянное направленное движение заряженных частиц в электрическом поле.

Источник тока

Направленное движение зарядов обеспечивается электрическим полем. Электрическое поле в проводниках создаётся и поддерживается источником тока. В источнике тока совершается работа по разделению положительно и отрицательно заряженных частиц. Эти частицы накапливаются на полюсах источника тока. Один полюс источника заряжается положительно, другой — отрицательно. Между полюсами источника образуется электрическое поле, под действием которого заряженные частицы начинают двигаться упорядоченно.

В источнике тока совершается работа при разделении заряженных частиц. При этом различные виды энергии превращаются в электрическую энергию. В электрофорной машине в электрическую энергию превращается механическая энергия, в гальваническом элементе — химическая.

Действие электрического тока

Электрический ток, проходя по цепи, производит различные действия. Тепловое действие электрического тока заключается в том, что при его прохождении по проводнику в нём выделяется некоторое количество теплоты. Пример применения теплового действия тока — электронагревательные элементы чайников, электроплит, утюгов и пр. В ряде случаев температура проводника нагревается настолько сильно, что можно наблюдать его свечение. Это происходит в электрических лампочках накаливания.

Магнитное действие электрического тока проявляется в том, что вокруг проводника с током возникает магнитное поле, которое, действуя на магнитную стрелку, расположенную рядом с проводником, заставляет её поворачиваться. Благодаря магнитному действию тока можно превратить железный гвоздь в электромагнит, намотав на него провод, соединённый с источником тока. При пропускании по проводу электрического тока гвоздь будет притягивать железные предметы.

Химическое действие электрического тока проявляется в том, что при его прохождении в жидкости на электроде выделяется вещество. Если в стакан с раствором медного купороса поместить угольные электроды и присоединить их к источнику тока, то, вынув через некоторое время эти электроды из раствора, можно обнаружить на электроде, присоединённом к отрицательному полюсу источника (на катоде), слой чистой меди.

Некоторые источники утверждают, что существует также механическое действие (например, рамка, по которой течет ток, поворачивается, если её поместить между полюсами магнитов) и световое (светодиоды).

Конспект по по физике в 8 классе: «Постоянный электрический ток. Действие электрического тока».

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector