Gc-helper.ru

ГК Хелпер
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Стабилизатор по току для светодиодных ламп в авто

Светодиоды для авто своими руками

Многие автолюбители хотели бы заменить штатные лампочки накаливания в авто на светодиоды. Преимущество последних несомненно — низкий ток потребления, долговечность, более высокая светоотдача, отсутствие нагрева. Приятно оставить включенными габариты и поутру обнаружить, что аккумулятор и не думал разряжаться. Эта статья поможет самостоятельно произвести замену автомобильных лампочек на светодиоды своими руками и избежать типичных ошибок.

Основные позиции, которые нам нужно усвоить:

1. Напряжение в бортовой сети авто. Обычно это 12 — 13 В при заглушенном двигателе и 13 — 14,5 В при заведенном.

2. Напряжение питания типичного светодиода – 3,5 в. В зависимости от цвета это может быть : для желтых и красных светодиодов — 2 — 2,5 в.; для синих, зеленых, белых — 3-3,8 в. Типовой ток маломощного светодиода – 20 мА, мощного – 350 мА.
3. Не все светодиоды, в отличие от лампочек, освещают пространство вокруг себя. Это нужно учесть при замене индикаторных ламп, например, в приборной панели. При покупке следует обратить внимание на тип линзы или, если есть возможность, спросить у продавца. Узконаправленные светодиоды имеют на конце маленькую линзу. Вообще, постарайтесь проверить это при покупке, а еще лучше, купите и попробуйте несколько разных.
4. У светодиода, как и у аккумулятора, есть плюс и минус. Минус называется катодом, плюс — анодом, на схемах они изображаются так :

Вам должно быть понятно, что просто взять и включить

светодиод в бортовую сеть авто – это значит гарантированно его сжечь .

Подключаем светодиоды

1. В продаже продаются светодиодные панельки, так называемые кластеры, они рассчитаны на питание 12в. Их можно просто подключить к бортовой сети и радоваться красивым огонькам. Но есть неприятная особенность – при изменении оборотов двигателя будет меняться яркость свечения светодиодов в кластерах. Незначительно, но заметно глазу. К тому же, по факту, нормально они светят при напряжении около 12,5в, поэтому если у вас низкое напряжение в бортовой сети, светить кластеры будут тускло. Конструктивно кластер состоит из цепочки светодиодов и резистора. На каждые три светодиода — резистор, который гасит лишнее напряжение. Светодиодная лента устроена точно также, поэтому если вам надо отрезать кусок — посмотрите на ленту, на ней есть места, где ее можно резать. Обычно это те же три светодиода и резистор. Где попало резать нельзя 🙂

2. Включить светодиоды последовательно, цепочкой, то есть сделать самодельный кластер. То есть сцепить нужное количество между собой, а оставшиеся два вывода – к бортовой сети. Оговоримся, что речь идет о белых светодиодах. У светодиодов разного цвета напряжение разное. Нетрудно подсчитать, что для 12-14 в понадобится 3 светодиода. В сумме они дадут 3,5х3=10,5 в. Как говорилось выше, у светодиода есть плюс и минус. Соединение последовательно – это когда плюс одного соединяется с минусом следующего и так далее до конца цепочки.

Но напрямую их подключать все еще нельзя, нужно последовательно с вашей цепочкой включить гасящий лишнее напряжение резистор (сопротивление) — номиналом примерно 100-150 Ом, мощностью 0,5 Вт. Резисторы продаются в любом магазине для радиолюбителей.

Этот способ страдает тем же недостатком, что и предыдущий – изменением интенсивности свечения светодиодов при изменении оборотов. Небольшим, но неприятным. Тем не менее, пользуясь этой схемой вы можете подключить любое количество светодиодов, собирая их цепочками по 3 шт. с резистором и включая параллельно. Параллельно — это значит собрать несколько одинаковых цепочек, плюс каждой цепочки соединить с плюсом другой цепочки, минус — с минусом. Вообще, номинал резистора вычисляется по закону Ома. Но если вы не в ладах с формулами, применяйте простое правило: если включаете 1 светодиод — резистор нужен 500 Ом, если два — 300 Ом, три светодиода — 150 Ом. При этом дальше можете не читать. 🙂 Но потратив полчаса на изучение простой формулы, вы научитесь правильно подбирать значения резисторов, а значит ваши светодиоды будут светить долго и правильно. Могу заверить, что не нужно быть академиком, постараюсь разьяснить подробно и понятно. Вам понадобятся :


1. Прибор-измеритель напряжения, тока и сопротивления, в простонародье «Цешка» или «Мультиметр». Продается в магазинах радиолюбителей, электротоваров и на китайских рынках. Стоит от 50 рублей. Рекомендую купить цифровой, с ним понятнее. Этой штукой вы сможете произвести все нужные измерения, если, конечно, изучите инструкцию или статью «Мультиметр для «чайников».

2. Закон Ома для участка электрической цепи, то есть для вашего светодиода и резистора. R=U/I . Где R — сопротивление резистора, U — напряжение, которое нужно погасить, I — ток в цепи. То есть, чтобы получить сопротивление гасящего резистора, нужно разделить напряжение, которое нужно погасить, на ток, который нужно получить.

Рассмотрим пример. У нас есть простой белый светодиод, который нам нужно подключить к бортовой сети автомобиля. Напряжение питания такого светодиода приблизительно 3,5 в, ток — 20 мА.

1. Замеряем напряжение в той точке, к которой мы собираемся подключить светодиод. Дело в том, что напряжение в бортовой сети разное. На аккумуляторе может быть 13 вольт, а на прикуривателе — 13,5 и т.д. Поэтому определитесь заранее, куда будете подключать. Включите прибор в режим измерения напряжения и произведите замер. Допустим, это 13 в. Запишите на бумажке.

2. Вычитаем из 13в напряжение питания светодиода (3,5в). Получаем 9,5 в. Ток в формулу подставляется в амперах, в одном ампере 1000 миллиампер, то есть в нашем случае 20 мА — 0,02 А. Пользуясь формулой вычисляем сопротивление :

Чтобы резистор при работе не грелся, вычисляем его мощность. Для этого надо умножить напряжение, которое гасит резистор — 9,5 вольт, на ток, который через него проходит — 0,02 ампера. 9,5х0,02= 0,19 ватт. Лучше брать резистор с запасом — 0,5-1 ватт.

То есть нам нужно сказать продавцу в магазине радиотоваров «Мне нужен резистор 475 Ом 0,5 или один ватт.». Можно использовать номинал и побольше, только светить светодиоды будут тусклее. Поменьше — будет ярче, но ему это может не понравиться.

Купив искомое, подключаем и радуемся 🙂 Чтобы уж окончательно убедиться в правильности расчетов, можете померять ток в цепи. Для этого нужно включить мультиметр в режиме измерения тока (см. инструкцию к прибору) в разрыв между резистором и светодиодом. Если инструкция потеряна — не беда. Установите диск на метку «10А», и переключите красный щуп в гнездо с подписью «10А».

Он должен показать 20 миллиампер или меньше. У резисторов и светодиодов есть разброс параметров, поэтому ток может отличаться в обе стороны, но незначительно. Если значение от 15 до 23 мА — нормально. Чем больше ток, тем ярче светит светодиод, но тем меньше срок его службы. Поэтому для обычных светодиодов не рекомендуют устанавливать ток выше 20 мА, оптимально — 18мА. Самый лучший способ подбора нужного сопротивления — использовать переменный резистор. Но это уже сложнее 🙂

Вышеприведенная информация позволит произвести подключение любого количества маломощных и мощных светодиодов, достаточно знать их рабочие напряжение и ток и подставлять их в формулу.
Очень полезно бывает подключить параллельно светодиоду обычный диод любого типа в обратной полярности, то есть катодом диода к аноду светодиода. Это защитит ваш светодиод от напряжения обратной полярности. Особенно это актуально для отечественных автомобилей почтенного возраста.

Для самых пытливых 🙂 — первый светодиодный драйвер для авто

Дальнейшая информация служит для продвинутых любителей, которые закон Ома уже освоили. Нет предела совершенству, и вам уже мало просто зажечь светодиоды — хочется, чтобы они светили равномерно, не завися от оборотов двигателя.

Самое правильное включение светодиодов – через стабилизатор тока. Светодиод — это полупроводниковый прибор, который питается током, а не напряжением. Поэтому, если вы стабилизируете и ограничите ток, протекающий через него, то можете подключить хоть киловольт, светодиод будет светить нормально. А от режима работы зависит как долго светодиод будет светить не теряя яркости. Для стабилизации тока используются приборы, называемые драйверами. Простейший драйвер — схема на микросхеме-стабилизаторе LM317. Главное достоинство этой микросхемы для начинающих — ее очень трудно спалить 🙂

Испугались ? Ничего 🙂 В сущности, требуются две детали — сама микросхема — трехвыводной стабилизатор напряжения, который мы включим в режим стабилизации тока, и резистор. Чтобы не вдаваться в теорию, действия следующие — приобретаем переменный резистор сопротивлением 0,5 кОм. Это такая штуковина с тремя выводами и крутилкой. Как и микросхема, он продается все в том же «Радиолюбителе» за смешные деньги. Можно и вовсе выковырять из ненужного бытового прибора. Припаиваем провода к среднему выводу и одному из крайних, неважно какому. Включаем мультиметр в режим измерения сопротивления. Подключаем к проводам прибор и замеряем сопротивление резистора. Вращением стержня добиваемся максимального показания, то есть 500 Ом (или около того). Это чтобы не сжечь светодиод при слишком низком сопротивлении резистора.

Читать еще:  Как от двух проводов подключить две лампочки

Собираем цепь. Внимание! Внимательно проверьте правильность соединений перед подключением ? Проверили ? Точно ?

Прибор включаем в режим измерения тока. Вращением движка переменного резистора добиваемся показаний прибора 20 мА. Отключаем цепь, замеряем сопротивление резистора и впаиваем вместо него обычный резистор с таким же сопротивлением. Вуаля! Вы только что собрали свой первый светодиодный драйвер 🙂 Он имеет ограничение по максимальному току в пределах 1-1,5 А, поэтому при подключении большого количества светодиодов : во первых, используйте резистор большей мощности. Во-вторых, потрогайте микросхему. Если горячая — имеет смысл прикрепить ее к радиатору. Не забывайте, что корпус авто имеет электрический контакт с «минусом» аккумулятора, а подложка микросхемы (корпус) — со своей второй ножкой. Поэтому крепить ее на кузов без изолирующей прокладки — плохая идея. Еще один нюанс — сама микросхема снижает максимальное напряжение, которое можно подать на светодиод, на два-три вольта. Поэтому больше 11-12 вольт вы при таком драйвере не получите. Но зато он простой и первое представление о правильном подключении светодиодов в авто вам даст 🙂 К слову сказать, на этой же микросхеме + пара деталей можно собрать регулируемый блок питания 1,5-30 в., что бывает очень полезно в автомобиле. Схем включения в интернете множество.
В общем, если у вас все получилось — добро пожаловать в увлекательный мир радиоэлектроники, ведь вряд ли вы теперь остановитесь.

(с) Юрий Рубан, led22.ru. Вопросы и критика приветствуются в разделе «Светодиоды в авто» на форуме «Светлый угол»

Подарки и советы

Множество идей оригинальных и приятных подарков по любому событию и на все случаи жизни

Стабилизатор напряжения 12 в для авто. Две простые, но надежные схемы стабилизатора тока для светодиодов в авто

Светодиодные поделки, а также различного рода подсветки сегодня встречаются все чаще. Однако стоит одному светодиоду перестать работать, как все впечатление от света пропадает. Для этого чтобы разочарование не настигло, стоит использовать стабилизаторы, которые устанавливаются на светодиодные конструкции.

Простейший стабилизатор, выполненный своими руками

Если разобраться в причине, по которой происходит перегорание светодиодных ламп, то здесь все просто. Ни для кого не секрет, что все светодиодные элементы, которые так оригинально украшают авто, рассчитаны на работу при постоянном напряжении с показателем 12 вольт. Но напряжение, которое выдает бортовая сеть, практически не может обеспечивать такой показатель. Как правило, оно составляет 15 вольт. В результате светодиоды начинать тускнеть, моргать или вовсе перестают работать.

Для того чтобы бороться с такой проблемой, стоит использовать стабилизатор напряжения , который можно создать самостоятельно, ведь для этого особых знаний не требуется.

Стабилизатор, рассчитанный на 12 вольт, можно приобрести практически в любом магазине, где продаются радиодетали. Можно выбирать совершенно разную маркировку. Самым простым вариантом можно выделить КРЕН 8Б, а также стоит приобрести диод 1N4007. Последний стоит использовать с целью устранения возможности появления переполюсовки. При создании стабилизатора диод необходимо впаять на вход. Когда диод на месте, можно приступать к подключению стабилизаторов.

После проведения работы, можно произвести замеры. Измеряя напряжение, которое дает бортовая сеть при неработающем зажигании, видим, что оно составляет 12.24 вольта. Светодиодные элементы на него могут и не прореагировать. А вот если включить зажигание, то напряжение равно 14.44. После того как установлены стабилизаторы, видно что они свою работу полностью выполняют и напряжение выдается не более 12 вольт.

Важнейшим параметром питания любого светодиода является ток. При подключении светодиода в авто, необходимый ток можно задать с помощью резистора. В этом случае резистор рассчитывается исходя из максимального напряжения бортовой сети (14,5В). Отрицательной стороной данного подключения является свечение светодиода не на полную яркость при напряжении в бортовой сети автомобиля ниже максимального значения.

Более правильным способом является подключение светодиода через стабилизатор тока (драйвер). По сравнению с токоограничивающим резистором, стабилизатор тока обладает более высоким КПД и способен обеспечить светодиод необходимым током как при максимальном, так и при пониженном напряжении в бортовой сети автомобиля. Наиболее надежными и простыми в сборке являются стабилизаторы на базе специализированных интегральных микросхем (ИМ).

Стабилизатор на LM317

Трёхвыводной регулируемый стабилизатор lm317 идеально подходит для конструирования несложных источников питания, которые применяются в самых разнообразных устройствах. Простейшая схема включения lm317 в качестве стабилизатора тока имеет высокую надежность и небольшую обвязку. Типовая схема токового драйвера на lm317 для автомобиля представлена на рисунке ниже и содержит всего два электронных компонента: микросхему и резистор. Помимо данной схемы, существует множество других, более сложных схемотехнических решений для построения драйверов с применением множества электронных компонентов. Детальное описание, принцип действия, расчеты и выбор элементов двух самых популярных схем на lm317 можно найти .

Главные достоинства линейных стабилизаторов, построенных на базе lm317, простота сборки и дешевизна используемых в обвязке компонентов. Розничная цена самого ИС составляет не более 1$, а готовая схема драйвера не нуждается в наладке. Достаточно замерить мультиметром выходной ток, чтобы убедиться в его соответствии с расчётными данными.

К недостаткам ИМ lm317 можно отнести сильный нагрев корпуса при выходной мощности более 1 Вт и, как следствие, необходимость в отводе тепла. Для этого в корпусе типа ТО-220 предусмотрено отверстие под болтовое соединение с радиатором. Также недостатком приведенной схемы можно считать максимальный выходной ток, не более 1,5 А, что устанавливает ограничение на количество светодиодов в нагрузке. Однако этого можно избежать путём параллельного включения нескольких стабилизаторов тока или использовать вместо lm317 микросхему lm338 или lm350, которые рассчитаны на более высокие токи нагрузки.

Стабилизатор на PT4115

PT4115 – унифицированная микросхема, разработанная компанией PowTech специально для построения драйверов для мощных светодиодов, которую можно использовать также и в автомобиле. Типовая схема включения PT4115 и формула расчета выходного тока приведены на рисунке ниже.

Стоит подчеркнуть важность наличия конденсатора на входе, без которого ИМ PT4115 при первом же включении выйдет из строя.

Понять, почему так происходит, а также ознакомиться с более детальным расчетом и выбором остальных элементов схемы можно . Известность микросхема получила, благодаря своей многофункциональности и минимальному набору деталей в обвязке. Чтобы зажечь светодиод мощностью от 1 до 10 Вт, автолюбителю нужно всего лишь рассчитать резистор и выбрать индуктивность из стандартного перечня.

PT4115 имеет вход DIM, который значительно расширяет её возможности. В простейшем варианте, когда нужно просто зажечь светодиод на заданную яркость, он не используется. Но если необходимо регулировать яркость светодиода, то на вход DIM подают либо сигнал с выхода частотного преобразователя, либо напряжение с выхода потенциометра. Существуют варианты задания определенного потенциала на выводе DIM с помощью МОП-транзистора. В этом случае в момент подачи питания светодиод светится на полную яркость, а при запуске МОП-транзистора светодиод уменьшает яркость наполовину.

К недостаткам драйвера светодиодов для авто на базе PT4115 можно отнести сложность подбора токозадающего резистора Rs из-за его очень малого сопротивления. От точности его номинала напрямую зависит срок службы светодиода.

Обе рассмотренные микросхемы прекрасно зарекомендовали себя в конструировании драйверов для светодиодов в автомобиле своими руками. LM317 – давно известный проверенный линейный стабилизатор, в надежности которого нет сомнений. Драйвер на его основе подойдёт для организации подсветки салона и приборной панели, поворотов и прочих элементов светодиодного тюнинга в авто.

PT4115 – более новый интегральный стабилизатор с мощным MOSFET-транзистором на выходе, высоким КПД и возможностью диммирования.

Сегодня нетрудно заметить, что светодиодные элементы все глубже внедряются в нашу жизнь. Техники со светодиодами становиться все больше и больше, но случается такое, что один или несколько лампочек перегорают и уже красота прибора уходит на второй план. Особенно это касается кустарных самоделок, где чаще преобладает ручной труд. Для того, чтобы этого не происходило необходимо ставить стабилизаторы на сборки со светодиодными элементами.

Общеизвестно, что лампочки (светодиодные) рассчитаны максимум на 12 вольт, а также известно, что бортовое напряжение в автомобиле может превышать 15-ти вольт, что губительно для вышеназванных ламп. Из-за таких резких скачков напряжений светодиоды могут выйти из строя – мигать, терять яркость и так далее.

Чтобы этого не происходило, необходимо лишь в сборку вставить стабилизатор. Изготовление стабильника, о котором речь пойдет далее, не требует особых навыков и умений. Стабилизатор на 12 вольт можно легко найти в любом магазине радиодеталей.

Маркировка стабилизаторов может быть разной, в данном случае был использован КРЕН-8Б и диод 1N4007, который необходим для предотвращения возможной переполюсовки. Диод необходимо впаивать на вход стабилизатора.

Так как у меня уже была изготовлена подсветка для ног, соответственно стабилизатор был вначале подключен к этой схеме. Напряжение при выключенном зажигании составляет 12,24 вольт – это напряжение аккумулятора – такое напряжение не представляет угрозы для лампочек, а уже при заведенном двигателе напряжение резко скачет до 14,44 вольт, что губительно для светодиодов.

Читать еще:  Светодиодный прожектор лампа переменного тока

При подключении стабилизатора, можно легко заметить этот элемент четко справляется со своей задачей.

Подключаем к подсветке низа дверей. Приходится снять обшивку двери.

Думаю все, кто ставил светодиоды в машину, рано или поздно сталкивались с тем, что диоды перегорали. Это происходит из-за того, что в электропроводке исправного автомобиля напряжение «гуляет» в пределах от 11 до 15 вольт, плюс различные скачки напряжения, помехи и импульсы обратного тока.
Для того, чтобы этого избежать, необходимо ставить стабилизатор тока.

Как показывает практика, лучше всего использовать микросхему LM317T.

Учтите, что Uвых находится не только на средней ножке, но и на теплоотводе.

Простейшая схема подключения данной микросхемы выглядит так:

Учтите, что наши диоды не должны потреблять в сумме больше 1,5А, иначе стабилизатор сгорит.

Оптимальная схема, конечно, посложнее и выглядит так:

Задача была такая: собрать стабилизатор, чтоб на входе было 14,5В, а на выходе 12В.
Нам понадобится:
1. Микросхема LM317T — 2шт.
2. Диод 1N4007 — 2шт.
3. Конденсатор 1мкф 16В — 2шт.
4. Конденсатор 2,2мкф 16В — 2шт.
5. Плата для монтажа — 2 шт.
6. Термоусадочная трубка по размеру платы.
7. Паяльник (а лучше паяльная станция).
8. Прямые руки.
Всё это можно купить, например, в Чип и Дип или Кварц1 (в Москве).

Схема в моем случае получилась такая:

Диод 1N4007 нужен для зашиты от импульсов обратного тока, а конденсаторы для стабилизации напряжения при временном его падении в сети автомобиля (например, при моргании поворотников).

Контур справа со светодиодами это мои «ангельские глазки» — они неразборные, так что резисторы там стоят заводские.

Получилось всё это в таком виде:

Плата обтянута термоусадочной пленкой для герметизации и по краям залита клеем-герметиком (ну не любит электроника воду). Слева — разъем, чтоб подключать к диодам (стабилизатор будет находиться за пределами фары).

В общем, как ни странно, штука пока работает и, надеюсь, диодные кольца будут жить долго и счастливо =)

И еще хочу отметить один момент, есть такие современные грузовые автомобили как JAC, очень практичные и удобные, как в обслуживании так и в эксплуатации. В ремонтном соотношении, запчасти jac очень легко заказать и приобрести. Приобретая этот автомобиль вы делаете правильный выбор.

Стабилизатор напряжения 12 вольт для светодиодов в авто своими руками схема

Выбор стабилизатора

В бортовой сети автомашины рабочее питание составляет примерно от 13 В, большинству же светодиодов подходит 12 В. Поэтому обычно ставят стабилизатор напряжения, на выходе которого 12 В. Таким образом, обеспечиваются нормальные условия для работы светотехники без ЧП и преждевременного выхода из строя.

На этом этапе любители сталкиваются с проблемой выбора: конструкций опубликовано множество, но не все хорошо работают. Выбрать нужно тот, что достоин любимого транспортного средства и, кроме того:

  • действительно будет работать;
  • обеспечит безопасность и защищенность светотехнике.

Типы стабилизаторов тока

Стабилизатор тока устанавливает заданный ток через светодиод вне зависимости от приложенного к схеме напряжения. При увеличении напряжения на схеме выше порогового уровня, ток достигает установленного значения и далее не изменяется. При дальнейшем увеличении общего напряжения, напряжение на светодиоде перестаёт меняться, а напряжение на стабилизаторе тока растёт.

Самый простой стабилизатор напряжения, сделанный своими руками

Если у вас нет желания покупать готовое устройство, тогда стоит узнать, как сделать простенький стабильник самому. Импульсный стабилизатор в авто сложно изготовить своими руками. Именно поэтому стоит присмотреться к подборке любительских схем и конструкций линейных стабилизаторов напряжения. Самый простой и распространенный вариант стабильника состоит из готовой микросхемы и резистора (сопротивления).

Сделать стабилизатор тока для светодиодов своими руками проще всего на микросхеме LM317. Сборка деталей (см. рисунок ниже) осуществляется на перфорированной панели или универсальном печатном плато.

Устройство позволяет сохранить равномерное свечение и полностью избавить лампочки от моргания.

Схема 5 амперного блока питания с регулятором напряжения от 1,5 до 12 В.

Для самостоятельной сборки такого устройства понадобятся детали:

  • плато размером 35*20 мм;
  • микросхема LD1084;
  • диодный мост RS407 или любой небольшой диод для обратного тока;
  • блок питания, состоящий из транзистора и двух сопротивлений. Предназначен для отключения колец при включении дальнего или ближнего света.

При этом светодиоды (в количестве 3 шт.) соединяются последовательно с токоограничивающим резистором, выравнивающим ток. Такой набор, в свою очередь, параллельно соединяется со следующим таким же набором светодиодов.

Что такое драйверы для светодиодов и зачем они нужны

Светимость полупроводникового лед-кристалла напрямую зависит от силы тока, проходящего через него. Нестабильность этого параметра, характерная для бытовой сети 220 В, приводит к быстрой деградации материала и выходу из строя светодиода. Поэтому и требуется для него драйвер. В его задачу входит преобразование параметров электрического тока в следующих направлениях:

  1. Стабилизация силы в точном значении выходных параметров.
  2. Задание амплитуды.
  3. Выпрямление из переменного в постоянный.

Обратите внимание! Величина напряжения на выходе из драйвера напрямую определяет способ и тип подключаемого светодиода. Если питание лампы идет от бытовой сети, параметр этого модуля должен быть на 220 В. Это нужно учитывать при покупке компонентов для светильника и стабилизатора, изготавливаемого своими руками.

Особенности драйвера светодиодов на 220 В

Главная особенность драйвера для светодиодов, питание которых осуществляется от 220 В, состоит в том, что он изменяет напряжение и предназначен для работы с электрическим током подобных характеристик. Поэтому для подключения лампочки не пригодны его низковольтные аналоги – например, от фонарика или автомобиля на 12 вольт. Кроме того, модели последнего типа могут включать в состав понижающий блок – трансформатор.

При изготовлении преобразователя своими руками следует знать его основные характеристики:

  1. Потребляемый ток. Должен совпадать со значением аналогичного параметра светодиодов, в противном случае они либо не будут выдавать полной яркости, заложенной производителем, либо перегорят.
  2. Мощность. Эта характеристика выражается в ваттах и равняется суммарной мощности всех led-узлов схемы.
  3. Напряжение на выходе. Находится в прямой зависимости от способа подключения и количества лед-элементов и падения напряжения на них – рассчитывается из суммарного их значения.

Расчет мощности при выборе ленты из последовательно соединенных светодиодов позволяет правильно подобрать драйвер для питания подсветки от 220 В. Итоговое значение равняется сумме данного параметра всех элементов плюс 25% (запас на возможную перегрузку). Например, в лед-полоске 20 элементов по 0,5 Вт каждый, общее значение составит 10W. Однако на практике лучше купить или изготовить своими руками прибор на 12-13 ватт.

Стабилизатор для светодиодов на микросхеме L7812 в авто

Стабилизатор тока для светодиодов может быть собран на базе 3-контактного регулятора напряжения постоянного тока (серии L7812). Устройство навесного исполнения отлично подходит для питания, как светодиодных лент, так и отдельных лампочек в автомобиле.

Необходимые компоненты для сборки такой схемы:

  • микросхема L7812;
  • конденсатор 330 мкф 16 В;
  • конденсатор 100 мкф 16 В;
  • диод выпрямительный на 1 ампер (1N4001, к примеру, или аналогичный диод Шоттки);
  • провода;
  • термоусадка 3 мм.

Вариантов на самом деле может быть много.

Стабилизатор напряжения для светодиодных ламп в авто

Итак, почему же так быстро перегорают габаритные, светодиодные лампочки или другие светодиодные лампочки, которые стоят в автомобиле, потому что в них используется в качестве драйвера обычный токоограничивающий резистор.

Как правило, светодиодные световые приборы, мощностью от 10 Вт и выше используют уже качественный импульсный стабилизатор — драйвер и такой болезнью не страдают в отличие от габаритных, дешевых светодиодных ламп.

Сначала эти лампочки начинают мерцать, то есть это уже первые признаки деградация кристалла, ну и потом они попросту перегорают. В среднем простой, светодиодной лампочки продолжительность жизни составляет один год, где-то меньше, где-то чуть больше.

Почему же так происходит?

А происходит это потому, что данный токоограничивающий резистор рассчитывается по специализированной формуле, (таких калькуляторов онлайн много в интернете) и подключается на соответствующие напряжение.

И вот тут производитель очень хитро делает, на некоторых цоколях написано 12 вольт,то есть токоограничивающий резистор для данной лампочки заточен под 12 вольт. А в автомобильной цепи, как мы знаем напряжение бывает не только 12 вольт, а доходит и до 14.5 вольт. То есть из этого делаем вывод, что светодиодная лампочка при 12 вольтах уже работает на максимальной мощности, а уже более 12 вольт идёт сильный износ кристалла светодиода, одним словом сильный перегруз.

Так, как же сделать так, чтобы они у нас не перегорали, я тоже в своё время замучился их менять, поэтому и решил этот вопрос изучить досконально и сделать преобразователь при котором светодиодная лампочка становилась практически вечной.

Есть конечно на али экспрессе такие преобразователи, которые уже рассчитаны для этих целей,

Читать еще:  Беспроводной выключатель для ламп


но есть одно НО…. они выдают высокочастотные импульсные помехи, но это присуще всем импульсным источникам питания. Это даёт большие наводки, например, при использовании FM модуляторов, особенно при прослушивании радио, да даже просто наводки в акустическую систему, с этой точки зрения нужно стараться, как можно меньше наполнять свой автомобиль импульсными источниками питания.

Поэтому мы будем с вами делать линейный стабилизатор с фиксированным напряжением, который имеет большие преимущества. Первое достоинство — он стоит сущие копейки по сравнению с импульсными. Второе, то что стабилизатор линейный и не даёт вообще никаких помех и высокочастотных наводок.

Схема подключения на базе LM2940CT-12.0

Корпус стабилизатора можно выполнить практически из любого материала, кроме дерева. При использовании более десяти светодиодов, рекомендуется к стабильнику приделать алюминиевый радиатор.

Может кто-то пробовал и скажет, что можно запросто обойтись без лишних заморочек, напрямую подключив светодиоды. Но в этом случае последние большую часть времени будут находиться в неблагоприятных условиях, посему прослужат недолго или вовсе сгорят. А ведь тюнинг дорогих авто выливается в довольно крупную сумму.

А по поводу описанных схем, их главное достоинство – простота. Для изготовления не требуется особых навыков и умений. Впрочем, если схема слишком сложная, то собирать её своими руками становится не рационально.

Стабилизаторы напряжения

Исходя из названия, эти устройства предназначены для поддержания напряжения в нагрузке на определённом уровне. При этом величина выходного тока зависит от самой нагрузки. Другими словами, сколько потребуется нагрузки, столько она возьмёт, но не более максимально возможного значения. Допустим, стабилизатор напряжения обладает такими выходными параметрами: 12В и 1 А. То есть на выходе всегда будет поддерживаться 12В, а ток потребления может быть в диапазоне от нуля до одного ампера. Существует два вида стабилизаторов напряжения: линейные и импульсные.

Как правило, регулирующим элементом в схеме стабилизатора является биполярный или полевой транзистор. Если этот транзистор работает в активном режиме, то стабилизатор называют линейным. Если же регулирующий транзистор работает в ключевом режиме, то стабилизатор называют импульсным.

Наиболее распространенными и недорогими являются линейные стабилизаторы напряжения, однако они имеют ряд недостатков:

  • низкий КПД;
  • при большом токе нагрузки нуждаются в теплоотводе;
  • имеют достаточно высокое падение напряжения.

Чтобы не сталкиваться с подобными недостатками, рекомендуется использовать стабилизаторы напряжения импульсного типа. Они бывают трех типов: повышающие, понижающие и универсальные. Импульсные стабилизаторы имеют высокий КПД, не нуждаются в дополнительном отводе тепла при больших токах нагрузки, но имеют более высокую стоимость.

Простой стабилизатор напряжения на 12 В собственными руками

Если имеются даже небольшие навыки в сборке электрической схемы, тогда стабилизатор напряжения необязательно приобретать в готовом виде. Для изготовления самодельного устройства человек потратить 50 рублей или меньше, готовая модель стоит несколько дороже. Смысла переплачивать нет, поскольку в результате получится качественный прибор, соответствующий всем необходимым требованиям.

Самый простой, но функциональный стабилизатор можно сделать своими руками без особых усилий. Импульсный прибор собрать очень сложно, особенно для новичка, а потому рассматривать стоит линейные стабилизаторы и любительские схемы на него.

Самый простейший стабилизатор напряжения 12 вольт собирается из схемы (готовой), а также резистора сопротивления. Желательно использовать микросхему LM317. Все детали будут крепиться к перфорированной панели или универсальной печатной плате. Если правильно собрать устройство и подключить его на свой автомобиль, то можно обеспечить хорошее освещение — лампочки перестанут моргать.

Простой стабилизатор для светодиодных ламп, лент и т.д.

Сегодня напишу о том, о чём надо было написать ещё давно, так как подсветок и поделок из светодиодов становится всё больше и больше, но бывает в них перегорает один или два светодиода, и уже красота уходит на задний план, вот чтобы этого не происходило, надо ставить стабилизаторы на светодиодные продукты. Поставив один раз такие стабилизаторы мы добиваемся долговечности и бесперебойной работы наших светодиодов.

Простой стабилизатор для светодиодов своими руками
Ни для кого не секрет что светодиодные лампочки, использующиеся в автомобиле, а так же большинство светодиодных лент рассчитано на постоянное напряжение в 12 вольт. А так же все знают что напряжение в бортовой сети может превышать 15 вольт, что для чувствительных светодиодов может быть губительно. Следствием резких скачков напряжения светодиоды могут выходить из строя (мигать, терять в яркости или что чаще просто перегорать).

С данной проблемой бороться можно и даже нужно, тем более особых знаний и затрат это не требует. Как вы наверное уже догадались, для борьбы с высоким (для светодиодов) напряжением необходимо приобрести и изготовить стабилизатор напряжения. Стабилизатор на 12 вольт можно без особого труда найти в любом магазине радиодеталей. Маркировка может быть разной, я брал КРЕН 8Б (15 рублей) и диод 1N4007 (1 рубль). Диод необходим для предотвращения переполюсовки и впаивать его нужно на вход стабилизатора.

Начал подключение стабилизаторов на подсветку ног (у меня уже было сделано). Как видно на картинке напряжение в бортовой сети с выключенным зажиганием (напряжение аккумулятора) составляет 12.24 вольта что для светодиодной ленты не страшно, а вот напряжение в бортовой сети с заведённым двигателем составляет угрожающие (для светодиодов) 14.44 вольта. Далее видим что стабилизатор со своей задачей справляется на отлично и выдаёт на выходе напряжение никогда не превышающее 12 вольт, что не может не радовать.

Единичный пример, в любых других эл. цепях ситуация аналогична


Продолжаем подключение стабилизаторов, далее на дополнительный стоп-сигнал.

Дальше стабилизаторы пришлось ставить на подсветку низа дверей. Тут уже пришлось снова снимать обшивку дверей.

Правая передняя дверь

Ну вот и всё осталось только всё хорошо заизолировать, смотать запас проводов и собрать обшивку дверей.
За всё время эксплуатации не один светодиод не перегорел и надеюсь что подсветка будет очень долго радовать меня и окружающих.

Стабилизатор тока для светодиодов двух выводной

Все знают, что для питания светодиодов требуется стабильный ток, иначе их кристалл не выдерживает и быстро разрушается. Для этого применяют токовую стабилизацию — специальные схемы драйверов или просто резисторы. Последний метод используется чаще всего, особенно в светодиодных лентах, где на каждые 3 LED элемента ставят по одному сопротивлению. Но резисторы, справляются со своим делом стабилизации не слишком эффективно, так как во-первых греются (лишний расход энергии), а во-вторых поддерживают заданный ток в узком диапазоне напряжений — согласно закона Ома.

Представляем радиоэлемент нового поколения — компактный регулятор тока для светодиодов от OnSemi NSI45020AT1G. Его важное преимущество — он двухвыводной и миниатюрный, создан специально для управления маломощными светодиодами. Устройство выполнено в SMD корпусе SOD-123 и обеспечивает стабильный ток 20 мА в цепи, не требуя дополнительных внешних компонентов. Такое простое и надежное устройство позволяет создавать недорогие решения для управления светодиодами. Внутри него находится схема из полевого транзистора и нескольких деталей обвязки, естественно с сопутствующими радиоэлементами защиты. Что-то типа такого LED драйвера.

Регулятор включается последовательно в цепь светодиодов, работает с максимальным рабочим напряжением 45 В, обеспечивает ток в цепи 20 мА с точностью ±10%, имеет встроенную ESD защиту, защиту от переполюсовки. При повышении температуры регулятора, выходной ток будет снижаться. Падение напряжения 0,5 В, а напряжение включения — 7,5 В.

Схемы включения стабилизатора тока LED

Для обеспечения тока в цепи больше 20 мА нужно включить параллельно несколько регуляторов (2 регулятора – ток 40 мА, 3 регулятора – ток 60 мА, 5 регуляторов — 100 мА).

Основные характеристики регулятора NSI45020

  • Регулируемый ток 20±10% мА;
  • Максимальное напряжение анод-катод 45 В;
  • Рабочий температурный диапазон -55…+150°С;
  • Корпус SOD-123 выполненный с использованием без свинцовых технологий.

Сферы применения стабилизатора NSI45020AT1G: световые панели, декоративная подсветка, подсветка дисплеев. В автомобилях регулятор тока ставят на подсветку зеркал, приборной панели, кнопок. Также его используют в светодиодных лентах вместо обычных резисторов, что позволяет подключать LED ленты к источникам разного напряжения без потери яркости. Напряжение питания у NSI45020 до 45 В, на выходе стабильные 20 мА. Включается последовательно с цепочкой светодиодов, единственное условие: сумма падений напряжения на светодиодах должна быть меньше входного напряжения минимум на 0,7 В. В общем деталь полезная, и если бы ещё цена на них была низкая — можно смело закупать партию и ставить вместо резисторов, на все светодиоды в приборах и конструкциях. Даташит на NSI45020 здесь

Изучим различные типы стабилизаторов напряжения — от простых схем на стабилитроне, до транзисторных и микросхемных.

Кодовая кнопка для ограничения доступа к объектам, простая схема с реле на МК Attiny13.

Высококачественный усилитель для электрогитары — полное руководство по сборке и настройке схемы на JFET и LM386.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector