Gc-helper.ru

ГК Хелпер
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Длительно допустимый ток кабельных линий

Кабели и длительно допустимые токи для них

Одним из основных этапов процесса проектирования электрической проводки относится определение необходимого типа кабеля и сечения проводов. От того, насколько грамотным будет этот выбор, напрямую зависит уровень безопасности в помещении.

В своде правил устройства электроустановок или, сокращенно, ПУЭ, изложены все требования, предъявляемые к монтажу электрической части и освещения:

  • всех типов строительных объектов как жилых, так и производственных;
  • улиц;
  • открытых пространств;
  • и не менее важное, устройства освещения рекламного характера;

В списке требований уделено внимание электрооборудованию общественных мест, спортивных сооружений и комплексов.

Немного теории

До потребителя электромагнитной энергии доходит не весь ее объем – в процессе движения часть энергии расходуется на нагревание провода. Величина потерь зависит от следующих факторов:

  • величины протекающего тока
  • сопротивления провода

Чем больше толщина (то есть, его поперечное сечение), тем меньше величина его сопротивления и потери допустимой энергии на нагревание.

Таким образом, при движении длительно допустимого тока или, другими словами, тока большого напряжения по проводу с небольшим сечением он будет серьезно нагреваться и оказывать тепловое воздействие на изоляционный материал. Если допустимый длительный ток для кабелей постоянно будет превышать нужные показатели в несколько раз , то изоляция полностью потеряет все свои защитные свойства и придет в негодность, а в системе произойдет сбой функционирования токопроводящих жил. Иными словами, случится короткое замыкание.

Правильно составленный проект электрической проводки для длительно допустимого тока поможет сократить потери энергии на нагрев проводов. Это ощутимо поможет сэкономить немалое количество денежных средств, которые идут на оплату коммунальных платежей.

Чем провод отличается от кабеля

Довольно часто эти понятия подменяются один другим. И это неудивительно. Зачастую непрофессионалу очень трудно отличить эти два изделия, из-за из внешнего сходства. Однако провод представляет собой систему, состоящую из следующих элементов:

  • одной неизолированной жилы
  • одной или более жил, покрытых изоляционным материалом

Поверх всех жил исходя из условий прокладки и использования провода создается неметаллическая оболочка, оплетка посредством волокнистых материалов, обмотка или слой проволоки. Все существующие в настоящее время на рынке провода бывают двух видов – голые и изолированные.

Голые провода – элементы, токопроводящие жилы которых не обладают защитным и изолирующим покрытием. Основная область применения данных проводов – воздушные линии электропередач.

Изолированные провода представляют собой элементы с покрытыми изоляцией токопроводящими жилами. В качестве изоляционного материала в подавляющем большинстве случаев используется либо резина, либо пластмасса.

Сверху изоляции у таких проводов находится оплетка, выполненная, из хлопчатобумажного материла или же оболочка из пластмассы либо резины.

Классификация проводов

Изолированные провода, в свою очередь, можно классифицировать на две группы – защищенные и незащищенные.

Защищенные получили свое название вследствие наличия у них сверху изоляционного материала оболочки. Ее основная функция – герметизация и обеспечение надежной защиты провода от разнообразных внешних факторов. К защищенным относятся изделия с маркировкой АПРН, ПРВД и АПРФ.

Незащищенный провод с изоляцией представляет собой систему, в которой отсутствует оболочка над изоляционным материалом. Такими проводами являются элементы АПРТО, ПРД, АППВ, ППВ, АППР и др.

Кабель представляет собой одну или несколько изолированных токопроводящих жил, которые скручены между собой. Как правило, они размещаются в специальной оболочке – из резины, пластмассы или металла. Главное предназначение оболочки – выдерживать допустимый длительный ток для кабелей и обеспечение надежной защиты изоляционного материала токопроводящих жил от внешнего воздействия. Это могут быть солнечные лучи, влага, химические соединения и механические повреждения.

Маркировка кабелей согласно требованиям ПУЭ

Каждой кабельной линии важно присвоить свое собственное название и номер. Если система содержит несколько элементов, то все из них должны находиться под номером кабельной линии с добавлением одной из букв, например, А или Б.

При открытой прокладке кабели и кабельные муфты требуется оснастить бирками с информацией о марке кабеля, уровне его напряжения, сечения и присвоенного номера.

Определение необходимой мощности, тока и сечения проводов и кабелей

Для установления требуемой величины сечения кабелей и проводов применяется такой показатель, как предельно допустимая величина потребляемого тока. При расчете необходимо учитывать то, что он зависит от общей мощности всех потребителей системы. Она, в свою очередь, определяется сложением электроэнергии, которую потребляет каждый элемент группы.

Определить допустимый длительный ток для кабелей и его значение можно без труда. Для этого разработана специальная формула: I=P/220. Сведения о мощности допустимой длительности тока можно найти в техническом паспорте изделия.

После того как будут проведены все расчеты и получена информация о суммарном токе всех потребителей электрической энергии, приступайте к расчету сечение кабеля. При этом необходимо учитывать показатель предельно допустимой токовой нагрузки:

  1. Для элементов из меди – 10 ампер на один квадратный миллиметр.
  2. Для элементов из алюминия – 8 ампер на один квадратный миллиметр.

Если планируется выполнение скрытой силовой проводки (например, в трубе или стене), то вышеуказанные значения необходимо скорректировать в сторону уменьшения путем умножения на поправочный коэффициент – 0,8.

При проведении подобной работы необходимо помнить, что оптимальное сечение кабеля – не менее 4 квадратных миллиметров. Именно эта величина является достаточной для обеспечения должного уровня механической прочности. Перечисленные выше значения запоминаются без труда и помогают использовать кабели с высокой точностью.

Основные правила монтажа

Говоря о правилах монтажа электрооборудования и различных осветительных приборов, следуйте советам и специалистов. Ниже приведены рекомендации по установке проводов и кабелей питания для 12-вольтного электронного оборудования (видеокамеры, датчики и другие электронные приборы):

  1. Предельно допустимое падение длительного допустимого тока, или другими словами, напряжения на любом из участков системы от блока питания до каждого элемента не должно составляет 1В.
  2. Если блок питания требуется подключить непосредственно к клеммам устройств, то лучше всего использовать провод, сечение которого не превышает отметки в 1,5 миллиметра.
  3. Если элементы размещены по длине провода равномерно, то величина его сечения может быть снижена в 2 раза.
  4. Если монтаж цепей питания предполагает использование провода с сечением, превышающим отметку в 1,5 квадратных миллиметров, то во избежание длительного перенапряжения необходимо равномерно распределить общую нагрузку. Выполнять данную работу требуется таким образом, чтобы имелась возможность к любой из групп системы подвести питание посредством отдельного луча. Величина сечения провода не должна быть больше 1,5 квадратных миллиметров.

Правильное определение сечения проводов складывается из нескольких показателей. Дело в том что все зависит от того какой именно источник тока планируется использовать в качестве питания сети. Это может быть и электронный, и индукционный. Оптимальная длина проводки электроблоков вторичной цепи ни в коем случае не должна быть более 2 метров. Однако бывают исключения в случаях с трансформаторами большей мощностью допустимого тока. Длина составит 3 метра. В таком случае нужно обратиться к документации для трансформатора.

Основные ПУЭ

Главными правилами ПУЭ, которые требуется соблюдать для обеспечения длительной безопасности при работе с электроустановками любого типа, являются:

  1. Соблюдение определенного расстояния до опасных элементов.
  2. Использование блокировочных и ограждающих устройств в целях предотвращения возникновения ошибок в процессе работы и доступа к элементам под высоким напряжением.
  3. Применение сигнализационных устройств, специальных надписей и плакатов.
  4. Установка устройств, которые обладают способностью уменьшать уровень допустимого электрического и магнитного напряжения до безопасных значений.
  5. Применение средств защиты от электрического и магнитного воздействия при превышении безопасных величин длительно допустимого тока.
Читать еще:  Как сделать выключатель света от выключателя

В заключение нужно еще раз отметить, что допустимый длительный ток для кабелей, это величина, напрямую зависящая от исходного материала, из которого выполнен кабель или провод, а также от условий окружающей среды. Категорически запрещено длительное воздействие высоких температур, химических соединений. А также нужно учитывать температуру воздуха и избегать механических повреждений.

И помните, лучше всего обратиться за помощью к высококвалифицированному специалисту, который составит грамотный проект будущей проводки в здании любого типа допустимый по всем показателям ПУЭ.

Эксплуатация кабельных линий 1-35 кВ — Определение допустимой длительной токовой нагрузки на кабельную линию

Содержание материала

Требованием Правил технической эксплуатации предусматривается, чтобы для каждой кабельной линии при вводе ее в эксплуатацию были установлены наибольшие допустимые токовые нагрузки. Это требование ПТЭ обусловлено тем, что длительная перегрузка кабельной линии может вызвать перегрев изоляции выше допустимого предела, ее преждевременное старение, а затем и повреждение в результате тепловой неустойчивости кабеля. Поэтому токовые нагрузки на кабельные линии устанавливаются такими, чтобы нагрев токопроводящих жил не превышал определенных значении, а следовательно возможность перегрева изоляции была бы исключена.
Действующими ГОСТ для кабелей с пропитанной бумажной изоляцией и с пластмассовой изоляцией установлены следующие максимально допустимые значения температур для токопроводящих жил:

Бумажная ИЗОЛЯЦИЯ, ° С

Пластмассовая
ИЗОЛЯЦИЯ, ° С

В режиме короткого замыкания Правилами устройства электроустановок допускается кратковременное повышение температуры токопроводящих жил для кабелей с бумажной изоляцией напряжением до 10 кв с медными и алюминиевыми жилами до 200° С, на напряжение 20—35 кВ — до 125° С, кабелей с поливинилхлоридной изоляцией до 150° С, а с полиэтиленовой — до 120° С. В процессе эксплуатации силового кабеля в нем выделяется значительное количество тепла. Источником его является тепло, выделяющееся в токопроводящих жилах при прохождении электрического тока нагрузки, а также для кабелей высокого напряжения и одножильных за счет потерь в изоляции, металлических оболочках и броне.
Мощность Р, переходящая в тепло Q, которое выделяется в токопроводящих жилах трехфазного кабеля, составляет:
где I — величина тока нагрузки кабеля, a; R — сопротивление жил, ом; п — количество жил (в данном случае 3).
Таким образом, нагрев кабеля пропорционален квадрату силы тока, протекающему по его токопроводящим жилам, и чем выше токовая нагрузка кабеля, тем выше поднимается температура токопроводящих жил.
Процесс повышения температуры жил и нагревания кабеля не будет беспредельным, так как сопровождается рассеиванием тепла в окружающее пространство. С повышением температуры кабеля одновременно повышается разность температур между кабелем и средой, где он проложен. Чем выше эта разность, тем интенсивнее будет происходить отдача тепла в окружающую среду. В какой-то момент разность температур достигнет такой величины, при которой все выделяемое тепло будет переходить в окружающую среду и температура токопроводящих жил больше повышаться не будет.

* Без учета температурного коэффициента удельного электрического сопротивления.
Такое состояние называется установившимся режимом работы кабельной линии. При этом
Приведенное выражение называется тепловым законом Ома, где разность температур жилы и среды (tm — *ср) в нем соответствуют разности потенциалов, величина s соответствует сопротивлению тепловому потоку или тепловому сопротивлению и тепловых омах по аналогии с сопротивлением R цепи электрического тока, a Q — величина теплового потока — величине электрического тока I.
Величина суммарного теплового сопротивления s кабеля и окружающей среды слагается из теплового сопротивления: изоляции кабеля — sb защитных покровов — s2, поверхности кабеля — ss, а также окружающей почвы —
В случае прокладки кабеля в блочной канализации величина суммарного теплового сопротивления должна учитывать дополнительно s5 — сопротивление массива блока и se — сопротивление от поверхности блока к почве.
Таким образом, величина суммарного теплового сопротивления кабеля определяется способом прокладки.
Так, при прокладке кабеля в земле (траншее)
S = S1 + s2 + s4.
при прокладке кабеля в воздухе S = S1 + s2 + s3.


Чем меньшее сопротивление оказывается тепловому потоку, тем интенсивнее будет происходить отдача тепла во внешнюю среду, тем ниже будет температура токопроводящей жилы и тем большую нагрузку можно допустить на кабель. В наиболее благоприятных условиях в отношении теплового режима находится кабель, проложенный в проточной воде. Вода обеспечивает наилучшие условия отвода тепла с поверхности кабеля, и благодаря наличию течения сопротивление тепловому излучению в этом случае практически равно нулю. Поэтому длительно допустимые нагрузки на кабель, проложенный в воде, являются наибольшими. При прокладке кабельной линии в земле — траншее большое влияние на величину теплового сопротивления имеет состав грунта, его способность удерживать влагу.
Песок, гравий, обладая высокой пористостью, имеют большее сопротивление, чем глинистые почвы. Наличие воздушных промежутков между кабелем и грунтом в траншее приводит к сильному возрастанию теплового сопротивления. Этим обстоятельством и вызвано требование ПУЭ об устройстве для кабелей, прокладываемых в земле, снизу подсыпки, а сверху засыпки мелкой землей, не содержащей камней, строительного мусора и шлака.
Качество грунта, его тщательное уплотнение в момент засыпки проложенного в траншее кабеля имеют решающее влияние на тепловой режим работы кабельной линии. Кабель, проложенный в воздухе, находится в менее благоприятных условиях в отношении нагрева, чем кабель, проложенный в земле. Это объясняется значительной величиной сопротивления тепловому излучению от поверхности кабеля в воздух. По этой причине и допустимые нагрузки на кабель, проложенный в воздухе, ниже аналогичного кабеля, проложенного в земле.
В особо неблагоприятных условиях в отношении нагрева находятся кабели, прокладываемые в блочной канализации. Последовательное включение ряда дополнительных тепловых сопротивлений, как воздуха в канале, стенок блока, взаимный подогрев кабелей, расположенных в несколько рядов, создают крайне тяжелый тепловой режим работы кабелей блока. Естественно, что этому способу прокладки соответствуют минимальные значения допустимых нагрузок по сравнению со всеми другими способами прокладки (в земле, в воздухе, в коллекторах и туннелях).
Зная допустимые по ГОСТ или ТУ температуры нагрева токопроводящих жил, можно определить величину допустимого на кабель тока:

откуда
где im = tmu — допустимая по ГОСТ температура нагрева токопроводящей жилы кабеля; IСр — температура среды, где кабель проложен; п — число жил кабеля; Es — суммарное значение последовательно включенных тепловых сопротивлений в тепловых омах*.

*Тепловым сопротивлением в один тепловой ом обладает тело размерами в 1 см которое при разности температур на противоположных поверхностях в 1° пропускает через себя тепловой поток мощностью 1 вт.

Таким образом, допустимая расчетная нагрузка на кабель обратно пропорциональна 2s, т. е. суммарному значению последовательно включенных тепловых сопротивлений самого кабеля и сопротивления внешней среды (земли или воздуха), где кабель проложен. Тепловое сопротивление кабеля не является величиной постоянной и возрастает в процессе его эксплуатации в связи с высыханием изоляции и наружных покровов. Тепловое сопротивление земли определяется, как нами было установлено выше, пористостью и способностью грунта удер живать влагу.
Опытные данные показывают, что для средних и больших сечений тепловое сопротивление самого кабеля составляет лишь 30—35% общего теплового сопротивления кабеля и среды прокладки. Теплоотдача в землю или в воздух, таким образом, является решающей при определении допустимой нагрузки на кабель.
Выполнение расчетов допустимых токов нагрузок в каждом отдельном случае и для большого числа кабельных линий, находящихся в эксплуатации, по изложенному выше способу сложно, требует больших затрат времени и труда. Поэтому расчетные значения длительно допустимых токов нагрузки для кабелей в зависимости от сечения, напряжения и условий прокладки установлены Правилами устройства электроустановок и приведены в табл. 1. Из приведенных в табл. 1 значений легко вывести соотношение допустимых нагрузок для трехжильных кабелей с поясной изоляцией в зависимости от вида прокладки. В табл. 2 приводятся эти данные для средних и больших сечений кабеля, принимая за единицу прокладку в земле.
Как видно из приведенных данных, допустимая нагрузка на кабель, проложенный в воздухе, примерно на 25—30% ниже допустимой нагрузки на аналогичный
Таблица 1
Допустимые длительные расчетные нагрузки для кабелей с медными (в числителе) и алюминиевыми (в знаменателе)
жилами с нестекающей и маслоканифольной нормально пропитанной бумажной изоляцией в общей свинцовой или алюминиевой оболочке, а также с отдельно освинцованными (или отдельно опрессованными) алюминиевыми оболочками, в зависимости от условий прокладки

Продолжение табл. I

Таблица 2

Читать еще:  Для led ленты выключатель с подсветкой

Соотношение допустимых нагрузок в зависимости от способа прокладки

5 секретов кабеля КГ — характеристики, отличия, недостатки.

Кабель КГ расшифровывается как:

    К — Кабель
    Г — Гибкий

На сайтах кабельных компаний, выпускающих данную продукцию, главное внимание уделяется основным техническим характеристикам: количество и сечение жил, номинальный ток, диаметр, масса и т.п.

Мы же рассмотрим несколько другие вопросы, которые играют не менее важную роль при выборе данного изделия.

1 Где кабель КГ подключать нельзя?

2 Есть ли кабель еще гибче?

3 Почему медная жила имеет темный цвет?

4 Почему специализированный кабель это “зло” для домашнего использования?

5 Почему у КЛ такой маленький срок службы?

Изначально упустив все это из вида, ваш кабель очень быстро «коротнёт», а вы даже не поймете почему это произошло и будете винить во всем некачественный материал или завод изготовитель, который в конечном итоге окажется вовсе не причем.

В наши дни на рынке присутствует очень много кабелей и проводов в оболочке, так что многие до сих пор путают понятия кабель и провод.
Кто-то заявляет, что кабелем считаются те изделия, которые можно прокладывать в земле.

Другие утверждают, что кабелем называются все провода, имеющие еще одну внешнюю оболочку. Хотя у самого первого кабеля в мире вовсе не было оболочки, тем не менее он все равно считался кабелем.

Позже жилы стали изолировать гуттаперчой — натуральным материалом из сока деревьев. При этом данную изоляцию приходилось еще и поддерживать во влажном состоянии.

Поэтому по одному внешнему виду нельзя судить, что перед вами – кабель или провод. Яркий тому пример шнур ШВВП или провод ПВС.

Сюда же можно отнести и СИП-4, который ошибочно называют кабель СИП.

Только производитель изделия, который придает его изоляции те или иные свойства, соответствующим образом маркирует товар, может указывать на его функциональное значение.

По идее эпоха резиновой изоляции уже давно прошла. Все массово переходят на другие инновационные материалы – полимеры, сшитый полиэтилен СПЭ и т.п.

Почему же кабель КГ до сих пор выпускается и массово используется как в быту, так и в промышленности? Может наши заводы просто не хотят перевооружать и модернизировать свой парк станков и оборудования, или у них слишком много запасов резины?

Вовсе нет. Ответ тут более простой. Гибкому кабелю КГ попросту нет достойной и недорогой альтернативы.

Изначально этот кабель пришел к нам на “поверхность” из шахты. Отсюда его и номинальное переменное напряжение – до 660В.

Резиновые оболочки всегда активно применяются там, где требуется максимальная гибкость:

    в шахте
    на экскаваторах
    талях, лебедках
    в судостроении (+ возможность использования при 100% влажности!)

Полюбили КГ не только электрики и сварщики. Ценители хорошего и качественного звука приспособили его для подключения акустики в автомобилях. Он до сих пор считается хорошей альтернативой специализированным маркам Pride 4Ga и т.п.

Главное преимущество КГ – способность работать в самых тяжелых производственных условиях. Кабель можно десятки метров безболезненно тащить по земле, подвергать жестким изгибам, деформации.

Никакой другой кабель в данной ситуации не заменит КГ. Будь у него хотя несколько слоев изоляции.


Он легко выдерживает вибрации, мелкие задиры изоляции и даже скручивания в петлю.

Хотя по норме радиус изгиба здесь тоже ограничивается – 8 наружных диаметров.

Если вам нужен еще более гибкий кабель, к ваши услугам марка КОГ или КОГ-1. Собственно он так и расшифровывается – Кабель Особо Гибкий.

В нем медные жилки намного тоньше, чем в обычном КГ. Отсюда и повышенная гибкость. Все-таки 6-й класс вместо 5-го.

Многие сварщики по этой причине выбирают именно его. На держак ставят КОГ-1*16 (меньше устает запястье), а на “массу” привычный КГ.

Чтобы отличить один от другого нужно микрометром сравнить именно толщину жилок. Не ориентируйтесь по сплетению жил в косички. Некоторые специалисты уверяют, что у КГ проводки идут сплошным слоем, а КОГ они якобы заплетены в отдельные пучки.


Это не так. Доверять можно только маркировке или показаниям микрометра. “Косички” бывают как у одной марки, так и у другой.

Еще один немаловажный момент – способность работы при высоких отрицательных температурах. Диапазон даже у обычного КГ очень широк – от -40С до +50С.

За счет этого зимой его можно беспрепятственно разматывать и сматывать, не повреждая жилы и изоляцию. Попробуйте проделать нечто похожее при -25С с винилом ВВГнг.

Кабель КГ даже при -30С остается достаточно гибким. Если вы проживаете в регионах с морозными зимами, то обратите внимание на марку КГ-хл.
У нее предельная температура до -60С!


Такой кабель будет идеальным вариантом для подключения газовых пушек при зимнем отогреве замерзших машин.

В быту обычный КГ применяется в качестве переноски для электроинструмента или при подключении сварочного аппарата. Он более устойчив к механическим воздействиям, чем провод ПВС.

А именно ПВС чаще всего и используется в заводских удлинителях.

Поэтому профессиональные монтажники предпочитают делать переноски на 220-380V самостоятельно.

Помимо обычного КГ или КГ-хл для промышленности выпускается и их модификация КГЭ.


Внутри оболочки такого кабеля имеется экран из токопроводящей резины. При повреждении жил кабеля моментально начинается утечка на этот экран, с последующим срабатыванием защит.

Кстати, многие потребители до сих пор почему-то путают КГ с другими «шахтными» марками, например ГРШЭ. Я помню, как шахтеры в советское время массово тащили такие кабеля к себе домой и “нахаляву” подключали ими свои жилые дома.

Читать еще:  Максимальный импульсный ток светодиода

Через пару лет стационарной уличной эксплуатации кабеля, начинались реальные проблемы.

Эл.монтеры обслуживающие данные ВЛ-0,4кв, потом долго матерились, пытаясь найти замыкание на разветвленной линии с десятками потребителей. Вроде бы и схлеста проводов нет, а автомат на КТП выбивает.

Вот и приходилось дабы найти повреждение, в первую очередь откидывать именно таких “шахтеров”.

Специальные экранированные марки кабеля КГ до сих пор используют в шахтах. Однако применять их в быту нет никакого смысла.

Еще одна особенность КГ — почерневшие медные жилы. Виновата здесь резиновая изоляция.

Она в своем составе имеет различные поливалентные металлы, а также серу. Сера при повышении температуры (кабель под нагрузкой) начинает активно взаимодействовать с медью, вызывая ее окисление.

Именно поэтому производитель между токоведущей медной жилой и изоляцией закладывает специальный разделитель в виде пленки.

Однако по ГОСТу такая пленка не требуется для кабелей сечением до 50мм2. Поэтому не удивляйтесь, если в вашем изделии ее не окажется.

Если же она присутствует, то это кабель очень хорошего качества и производитель отвечает за свой товар. У проводов ПВС никаких сепараторов не требуется, так как ПВХ оболочка медь не окисляет.

По цвету меди можно легко определить, какой кабель перед вами, новый или б/у. Даже если оболочка у него будет как новая, но жилы при этом потемневшие, можно сделать вывод, что кабель подвергался значительным нагрузкам или даже перегрузке.

Когда на абсолютно новом кабеле также наблюдается черный оттенок меди и вы действительно знаете, что он новый, то это говорит о нарушении технологии нанесения изоляции.

Ну а еще новый КГ нестерпимо воняет резиной. У старого острый запах постепенно выветривается.

Многих интересует, можно ли прокладывать кабель КГ под землей (непосредственно в земле без защитных труб)? Нет, нельзя.

Оболочка у КГ выполнена из резины марки РШТ-2. Она предназначена для легких и средних условий эксплуатации и под землей вследствие постоянного давления грунта кабель выйдет из строя.

Главный минус кабеля КГ это его срок службы. По нормативным параметрам он составляет 4 года с даты изготовления.

На переносках с кратковременной работой и нормальной эксплуатацией, плюс периодической перезаделкой концов, срок службы можно подлить до 10 лет.

Везде говорится, что КГ не боится ультрафиолета, однако это не относится к изоляции его жил. На солнце в первую очередь разрушается именно она. Поэтому оставлять на улице под открытым небом разделанные концы крайне не рекомендуется.


Поработали, смотали переноску в конце рабочего дня и убрали в гараж. Для длительного уличной эксплуатации производители выпускают другую разновидность кабеля – КГТП.

Буквы ТП обозначают, что изоляция у него (внутрення и внешняя) выполнена из термоэластопласта. Данная марка имеет повышенную стойкость к ультрафиолетовым лучам и меньший вес.

Еще не забывайте, что обычный КГ очень горючий и выделяет в процессе горения много токсичных веществ.

Есть правда марка КГн. Но все равно данный кабель нельзя использовать для стационарной прокладки в жилых и общественных зданиях.

Также не путайте кабеля КГВВнг и КГнг. Это две совершенно разные марки. К резиновым кабелям первый никакого отношения не имеет.

Из-за наличия сажи в изоляции, КГ всегда темного цвета. Протащив волоком кабель по идеально чистой поверхности, можно наследить и оставить плохо смываемые метки.

Поэтому будьте осторожны при таскании таких переносок в квартирах с чистовым ремонтом.

А еще, если кто-то додумается проложить такой кабель скрыто под штукатуркой у себя дома, то после прохождения через него достаточного тока КЗ, на обоях стены можно увидеть выступившую трассу КЛ ?

Кабель ВВГ 4х120: диаметр, вес и другие характеристики

Кабель марки ВВГ 4х120 является силовым медножильным кабелем, который часто используется в ремонтных и строительных работах. В соответствии с требованиями действующих норм и правил, применение кабеля ВВГ невозможно внутри зданий. Такое ограничение введено с целью повышения пожарной безопасности жилых и нежилых помещений.

Характеристики кабеля ВВГ 4х120
по ГОСТ 31996-2012

Кабель ВВГ 4х120 имеет поливинилхлоридный изоляционный слой и наружную оболочку и применяется для цепей, соответствующих следующим условиям:

  • напряжение сети не более 1000 В;
  • частота сети не более 50 Гц.

Расшифровка обозначения кабеля ВВГ 4х120

  • В — «винил», изоляция выполнена из пластиката поливинилхлорида;
  • В — «винил», оболочка выполнена из пластиката поливинилхлорида;
  • Г — «голый», в кабеле отсутствует броня;
  • П (при наличии) — плоская конструкция кабеля;
  • 4 — количество жил;
  • 120 — площадь сечение одной медной жилы, мм 2 .

Основные технические характеристики кабеля ВВГ 4х120

Все характеристики кабеля, необходимые для заказа и расчета, мы представили в виде таблицы.

Наименование характеристикиЕд. изм.Значение
ГОСТГОСТ 31996-2012
Класс жилы по ГОСТ 22483-20122
Код ОКП35 2122; 35 3371
Класс пожарной опасностиО1.8.2.5.4
Диапазон температур эксплуатации°Сот -50 до 50
Минимальная температура монтажа°С-15
Продолжительность эксплуатациилет30
Напряжение сетиВдо 1000
Частота переменного тока в сетиГц50 Гц
Допустимое растягивающее усилиеН14400
Максимально допустимая температура нагрева жил при КЗ°С160
Продолжительность короткого замыкания, не болеес5
Расчетная масса (вес) кабеля, 0,66 кВкг/кмтребует уточнения
Расчетная масса (вес) кабеля, 1 кВкг/км5657
Расчетная масса (вес) одного метра кабеля, 1 кВкг/м5657/1000
Допустимый радиус изгибамм348
Допустимая токовая нагрузка при прокладке на воздухеА302
Допустимая токовая нагрузка при прокладке в землеА317
Допустимый ток односекундного короткого замыканияА13.21
Объем горючей массыл/км767
Сопротивление изоляции жилМОм/км7
Толщина изоляции жил, 1 кВмм1.6
Толщина изоляции жил, 0,66 кВммтребует уточнения
Масса цветного металлаг/м4272
Максимальная мощность при прокладке в воздухе, 220 ВкВт88.59
Максимальная мощность при прокладке в земле, 220 ВкВт92.99
Максимальная мощность при прокладке в воздухе, 380 ВкВт198.72
Максимальная мощность при прокладке в земле, 380 ВкВт208.59
Температура нагрева жил по условию невозгорания°С350
Длительно допустимая температура нагрева жил°С70
Допустимая температура в режиме перегрузки°С90
Электрическое сопротивление жилыОм/км0.15

Конструктивные особенности ВВГ 4х120

В представленной ниже таблице отражены особенности конструкции кабеля.

Наименование характеристикиЕд. изм.Значение
Количество жилшт.4
Максимальный диаметр жилымм14.5
Наружный диаметр кабеля, 0,66кВммтребует уточнения
Наружный диаметр кабеля, 1 кВмм43.5
Максимальный вескг/м5.657
Материал жилыМедь
Материал изоляцииПВХ
Материал оболочкиПВХ
Тип конструкции жилымк, мс

Варианты конструкции жил:

  • ок — однопроволочная жила;
  • мк — многопроволочная жила.

Скачать чертеж кабеля ВВГ 4х120 в формате DWG (Autocad)

Если вы хотите скачать чертеж сечения и проекции кабеля ВВГ 4х120 в редактируемом формате программы Autocad, напишите нам!

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector