Gc-helper.ru

ГК Хелпер
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Два кабеля в один трансформатор тока

Силовые трансформаторы, простой расчет

В статье на конкретном примере приводится простой метод расчета силового трансформатора для блока питания или зарядного устройства.

  1. Перед тем, как использовать силовой трансформатор необходимо определиться с его мощностью.

Например, нужно рассчитать силовой трансформатор для зарядного устройства, которым будем заряжать автомобильные аккумуляторы емкостью до 60 А/час.

Как известно, ток заряда равен 0,1 от емкости аккумулятора, в нашем случае это 6 Ампер.

Напряжение для заряда аккумулятора должно быть не менее 15 В, плюс падение напряжения на диодах и токоограничивающем резисторе, примем его около 5 В.

Итого, напряжение вторичной обмотки должно быть около 20 В, при токе до 6 А. Мощность при этом, будет равна Р = 6 А х 20 В = 120 Вт.

К.п.д. силового трансформатора при мощности до 60 Вт составляет 0,75. При мощности до 150 Вт 0,8 и при больших мощностях 0,85.

В нашем случае принимаем к.п.д. равным 0,8.

При мощности вторичной обмотки 120 Вт, с учетом к.п.д. мощность первичной обмотки равна:

120 Вт : 0,8 = 150 Вт.

  1. По этой мощности определяем площадь поперечного сечения сердечника, на котором будут расположены обмотки.

S (см 2 ) = (1,0 ÷1,2) √Р

Коэффициент перед корнем квадратным из мощности зависит от качества электротехнической стали сердечника.

Принимаем его равным среднему значению 1,1 и получаем площадь сердечника равной 13,5 см 2 .

  1. Теперь нужно определить дополнительную величину – количество витков на вольт. Обозначим ее N.

Коэффициент от 50 до 70 зависит от качества стали. Возьмем среднее значение 60. Получаем количество витков на вольт равным:

Округлим это значение до 4,5 витка на вольт.

Первичная обмотка будет работать от 220 В. Ее количество витков равно 220 х 4,5 = 990 витков.

Вторичная обмотка должна выдавать 20 В. Ее количество витков равно 20 х 4,5 = 90 витков.

  1. Осталось определить диаметр провода обмоток.

Для этого нужно знать ток каждой обмотки. Для вторичной обмотки ток нам известен, его величина 6 А.

Ток первичной обмотки определим, как мощность, деленную на напряжение. (Сдвиг фаз для упрощения расчета учитывать не будем).

I1 = 150 Вт / 220 В = 0,7 А

Диаметр провода определяем по формуле:

Коэффициент перед корнем квадратным влияет на плотность тока в проводе. Чем больше его значение, тем меньше будет греться провод при работе. Примем среднее значение.

Для меди плотность тока до 3,2 А/мм кв, для алюминиевых проводов до 2А/мм кв.

Диаметр провода первичной обмотки:

D1 = 0,75 √0,7 = 0,63 мм

Диаметр провода вторичной обмотки:

D2 = 0,75 √6 = 1,84 мм

Для намотки выбираем ближайший больший диаметр. Если нет толстого провода для вторичной обмотки, можно намотать ее в два провода. При этом суммарная площадь сечения проводов должна быть не меньше площади сечения для рассчитанного диаметра провода. Как известно, площадь сечения равна πr² , где π это 3,14, а r — радиус провода.

Вот и весь расчет.

Если вторичных обмоток несколько, сумма их мощностей не должна превышать величину, равную мощности первичной обмотки, умноженной на к.п.д. Количество витков на вольт одинаково для всех обмоток конкретного трансформатора. Если известно количество витков на вольт, можно намотать обмотку на любое напряжение, главное, чтобы она влезла в окно магнитопровода. Диаметр провода каждой обмотки определяется исходя из величины тока этой обмотки.

Овладев этой простой методикой, вы сможете не только изготовить нужный вам силовой трансформатор, но и подобрать уже готовый.

Читать еще:  Как подключается двойной выключатель с подсветкой

Материал статьи продублирован на видео:

Выбор трансформаторов тока для электросчетчика 0,4кВ

Учет электроэнергии с потребляемым током более 100А выполняется счетчиками трансформаторного включения, которые подключаются к измеряемой нагрузке через измерительные трансформаторы. Рассмотрим основные характеристики трансформаторов тока.

1 Номинальное напряжение трансформатора тока.

В нашем случае измерительный трансформатор должен быть на 0,66кВ.

2 Класс точности.

Класс точности измерительных трансформаторов тока определяется назначением электросчетчика. Для коммерческого учета класс точности должен быть 0,5S, для технического учета допускается – 1,0.

3 Номинальный ток вторичной обмотки.

4 Номинальный ток первичной обмотки.

Вот этот параметр для проектировщиков наиболее важен. Сейчас рассмотрим требования по выбору номинального тока первичной обмотки измерительного трансформатора. Номинальный ток первичной обмотки определяет коэффициент трансформации.

Коэффициент трансформации измерительного трансформатора – отношение номинального тока первичной обмотки к номинальному току вторичной обмотки.

Коэффициент трансформации следует выбирать по расчетной нагрузке с учетом работы в аварийном режиме. Согласно ПУЭ допускается применение трансформаторов тока с завышенным коэффициентом трансформации:

1.5.17. Допускается применение трансформаторов тока с завышенным коэффициентом трансформации (по условиям электродинамической и термической стойкости или защиты шин), если при максимальной нагрузке присоединения ток во вторичной обмотке трансформатора тока будет составлять не менее 40 % номинального тока счетчика, а при минимальной рабочей нагрузке — не менее 5 %.

В литературе можно встретить еще требования по выбору трансформаторов тока. Так завышенным по коэффициенту трансформации нужно считать тот трансформатор тока, у которого при 25%-ной расчетной присоединяемой нагрузке (в нормальном режиме) ток во вторичной обмотке будет менее 10% номинального тока счетчика.

А сейчас вспомним математику и рассмотрим на примере данные требования.

Пусть электроустановка потребляет ток 140А (минимальная нагрузка 14А). Выберем измерительный трансформатор тока для счетчика.

Выполним проверку измерительного трансформатора Т-066 200/5. Коэффициент трансформации у него 40.

140/40=3,5А – ток вторичной обмотки при номинальном токе.

5*40/100=2А – минимальный ток вторичной обмотки при номинальной нагрузке.

Как видим 3,5А>2А – требование выполнено.

14/40=0,35А – ток вторичной обмотки при минимальном токе.

5*5/100=0,25А – минимальный ток вторичной обмотки при минимальной нагрузке.

Как видим 0,35А>0,25А – требование выполнено.

140*25/100 – 35А ток при 25%-ной нагрузке.

35/40=0,875 – ток во вторичной нагрузке при 25%-ной нагрузке.

5*10/100=0,5А – минимальный ток вторичной обмотки при 25%-ной нагрузке.

Как видим 0,875А>0,5А – требование выполнено.

Вывод: измерительный трансформатор Т-066 200/5 для нагрузки 140А выбран правильно.

По трансформаторам тока есть еще ГОСТ 7746—2001 (Трансформаторы тока. Общие технические условия), где можно найти классификацию, основные параметры и технические требования.

При выборе трансформаторов тока можно руководствоваться данными таблицы:

Выбор трансформаторов тока по нагрузке

Обращаю ваше внимание, там есть опечатки =)

2. Трансформаторы тока и схемы их соединений

Трансформатор тока – важный элемент релейной защиты. Он питает цепи защиты током сети и выполняет роль датчика, через который поступает информация к измерительным органам устройств релейной защиты.

2.1. Принцип действия

Первичная обмотка трансформатора тока включается последовательно в силовую цепь. Вторичная обмотка замыкается на сопротивление нагрузки Z Н – последовательно включенные реле и приборы.

Ток I 1 , протекая по обмотке, создаёт магнитный поток Ф 1 = I w 1 , под воздействием этого потока во вторичной обмотке наводиться ЭДС Е2. По обмотке протекает ток I 2 .

Читать еще:  Выключатель света с фотодиодами

Если не учитывать потерь то:

, (2.1)

где – витковый коэффициент трансформации.

В заводских материалах на трансформаторы тока указывают номинальный коэффициент трансформации . Если не учитывать потери, то n в = n т .

В действительности же I 2 отличается от расчетного значения. Часть тока I 1 тратиться на создание намагничивающего потока:

(2.2)

Если разомкнуть вторичную обмотку, магнитный поток в магнитопроводе резко возрастет. Магнитопровод быстро расплавится. Кроме того на вторичной разомкнутой обмотке появиться высокое напряжение, достигающие десятков киловольт. Вторичная обмотка обязательно должна быть заземлена – если произойдет пробой изоляции, то при заземленной вторичной обмотке получится короткое замыкание, защитная аппаратура отключит поврежденный трансформатор, заземление вторичной обмотке делается прежде всего для обеспечения техники безопасности.

Причиной погрешностей в работе трансформаторов тока является ток намагничивания. Чрезмерно большие погрешности могут вызвать неправильные действия релейной защиты, поэтому стараются уменьшить ток намагничивания.

2.2. Параметры, влияющие на уменьшение намагничивающего тока

Ток I нам состоит из активной и реактивной составляющих.

I а.нам – обусловлена активными потерями на гистерезис и от вихревых токов в магнитопроводе трансформатора тока.

I р.нам – создает магнитный поток, который индуктирует во вторичной обмотке ЭДС Е2.

Для уменьшения I а .н ам магнитопровод выполняется из шихтованной стали.

При насыщении I нам возрастает значительно быстрее, чем поток Фт , что вызывает резкое увеличение погрешностей. (см. рис. 2.2.1 – характеристика намагничивания трансформатора тока.)

Для ограничения погрешностей нужно уменьшить Фт :

Этого можно добиться, либо снизив ток I 2 за счет подбора соответствующего коэффициента трансформации (повысить n т для снижения кратности максимального первичного тока ), либо уменьшив сопротивление нагрузки вторичной обмотки Z н .

Требования к точности трансформаторов тока, питающих релейную защиту

Погрешность трансформаторов тока по току ( D I ) не должна превышать 10%, а по углу ( d ) – 7 ° .

Эти требования обеспечиваются, если I нам £ 0,1 I 1 .

Для каждого типа трансформаторов тока имеются определённые значения К1макс и Z н , при которых погрешность e будет равна 10%. Поэтому исходными величинами для оценки погрешности являются I 1макс и Z н :

где Z п – сопротивление проводов,

Z р – сопротивление реле.

Для упрощения в расчетах сопротивления суммируются арифметически.

Предельные значения К1макс и Z н из условия 10% погрешности дают заводы, изготавливающие трансформаторы тока.

Выпускаются трансформаторы тока следующих классов точности: 0,5;1;3;10 (для подсоединения к ним измерительных приборов) и Р (для релейной защиты).

Невский трансформаторный завод «Волхов»

Технический портал компании

Категории

  • – Изделия внутренней установки
  • Изоляторы
  • – Трансформаторы комбинированные
  • Заземляемые
  • Незаземляемые
  • Трехфазные группы
  • + Антирезонансные
  • 35 кВ
  • 6(10) кВ
  • 20 кВ
  • 35 кВ
  • 6(10) кВ
  • 20 кВ
  • 35 кВ
  • 6(10) кВ
  • 6(10) кВ
  • 10 кВ
  • 20 кВ
  • 35 кВ
  • 6 кВ
  • Встраиваемые
  • + Опорные
  • 10 кВ
  • 20 кВ
  • 35 кВ
  • 10 кВ
  • 0,66 кВ
  • 10 кВ
  • – Трансформаторы комбинированные
  • Заземляемые
  • Незаземляемые
  • Антирезонансные
  • + Заземляемые
  • 35 кВ
  • 20 кВ
  • 35 кВ
  • 6(10) кВ
  • 20 кВ
  • 35 кВ
  • 6(10) кВ
  • + Опорные
  • 35 кВ
  • Архив

Вторичные обмотки трансформаторов тока

Вторичные обмотки трансформаторов тока изготавливаются путем намотки медных эмальпроводов на тороидальные (реже прямоугольные) магнитопроводы из различных типов магнитных материалов. Каждая вторичная обмотка наматывается на свой магнитопровод.

Читать еще:  Выключатели со светодиодной подсветкой недостатки

Диаметр, количество витков и количество проводов, размер и тип материала магнитопровода выбирается при расчете трансформатора исходя из следующих параметров:

  • количество ампер-витков
  • номинальный вторичный ток
  • номинальный класс точности
  • коэффициент безопасности приборов (вторичные обмотки для измерения и учета)
  • предельная кратность (вторичные обмотки для защиты)
  • номинальная вторичная нагрузка

Обозначение обмоток

Выводы вторичных обмоток трансформаторов тока обозначаются 1И1-1И2, 2И1-2И2 и т.д. согласно ГОСТ 7746-2015.

Где первая цифра – порядковый номер вторичной обмотки;
Вторая цифра – номер вывода вторичной обмотки.

Обозначения выводов наносят таким образом, чтобы они имели одинаковую полярность, т.е. чтобы при направлении тока в первичной обмотке от Л1 к Л2, вторичный ток проходил по внешней цепи (приборам) от И1 к И2. (Вектор первичного тока повернут по отношению к вектору вторичного тока на 180°).

Максимальное количество вторичных обмоток определяется конструктивным исполнением трансформатора тока, вариантом исполнения вторичных выводов (исходя из максимального количества вторичных выводов) и параметрами вторичных обмоток, которые определяют их геометрический размер.

Параметры обмотки

Разные вторичные обмотки, входящие в состав одного трансформатора тока, могут иметь разный номинальный вторичный ток (1 А или 5 А) или разный коэффициент трансформации. Как правило, коэффициент трансформации вторичных обмоток в составе одного трансформатора может иметь отношения не более чем 1:4, но возможны и исключения в большую сторону.

Например: коэффициент трансформации обмотки 1И1-1И2 – 100/5; 2И1-2И2 – 400/5.

Обмотки с ответвлениями

Возможен вариант изготовления вторичной обмотки с ответвлениями (отпайками), при этом в обозначении трансформатора должна присутствовать буква «К» и опросный лист должен заполняться для каждой отпайки отдельно.

В связи с тем, что на разных отпайках количество витков разное, а магнитопровод общий, параметры вторичной обмотки (класс точности, номинальная вторичная нагрузка, коэффициент безопасности приборов, предельная кратность) на различных отпайках не всегда могут быть полностью идентичными.

Например: коэффициент безопасности приборов и предельная кратность в грубом приближении рассчитываются по формуле:

где Впр – предельное значение магнитной индукции, Тл
f – частота, Гц
W2 – количество витков вторичной обмотки
Sм – активное сечение магнитопровода, мм2
I – номинальный ток вторичной обмотки, А
Z2 – полное сопротивление вторичной обмотки, Ом

Из всех параметров переменными являются только w2 и Z2?

где Zном – номинальная вторичная нагрузка, Ом
Sном – номинальная вторичная нагрузка, В·А

Таким образом, учитывая, что сопротивление самой обмотки постоянному тока, чаще всего, значительно ниже сопротивления нагрузки, можно заметить, что сохранить значение К возможно только при увеличении номинальной вторичной нагрузки.

Если нагрузку оставить постоянной, то фактическое значение К на второй отпайке будет выше. Это нужно учитывать при проектировании и заказе трансформатора.

Тоже самое может сказаться на сочетании класса точности и номинальной вторичной нагрузки. Для отпайки с большим количеством ампервитков всегда можно значение нагрузки увеличить при сохранении класса точности.

Изготовление вторичных обмоток с отпайками приводит к увеличению количества вторичных выводов, общее число которых ограничено конструкцией трансформатора. Необходимо смотреть в техническом описании конкретного типа трансформатора их максимальное количество.

Отношение коэффициента трансформации на разных отпайках ограничено, зависит от ряда параметров и, как правило, не превышает 1:4.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector