Gc-helper.ru

ГК Хелпер
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Потеря силы тока от длины кабеля

Расчет потерь напряжения в кабеле

Любой кабель ограничен в своей пропускной способности. По этой причине могут появиться такие условия в электросети, когда для нормальной работы оборудования величина напряжения окажется недостаточной. Такое явление часто встречается, и по этой причине заслуживает более детального рассмотрения, что и будет сделано далее в нашей статье.

Основные причины падения напряжения

Итак, на пропускную способность кабеля оказывают влияние два его главных параметра:

  • площадь поперечного сечения;
  • длина.

Но сила тока в жилах – это как раз та физическая величина, с которой перечисленные параметры находятся в неразрывной связи по закону Ома для участка электрической цепи:

Среди указанных составляющих формулы сопротивления не хватает еще одной, связывающей силу тока и его неравномерное распределение по поперечнику жилы кабеля. Напоминаем, что это явление именуется поверхностным эффектом или скин-эффектом. Чем больше сила тока, тем заметнее скин-эффект. От него можно избавиться в кабеле, только делая жилы многопроволочными.

Но рассмотренные явления в полной мере соответствуют кабелям с постоянным током, используемым в основном для электрического транспорта. В остальном – это лишь часть того, что входит в понятие падения напряжения (ΔU) по длине кабеля, работающего в промышленной электросети, в которой действует переменное напряжение. В этих условиях любой проводник характеризуется импедансом, учитывающим его индуктивность и емкость, образующих реактивную составляющую напряжения и тока. Поэтому в целом получается комплексная проблема, которая, по сути, сводится к потерям электроэнергии. А ΔU – это их объективное проявление (см. поясняющее изображение далее):

Напоминаем, что в электротехнике для расчетов напряжений и токов с участием нагрузки, исчисляемой по импедансу, используются комплексные числа. Индуктивность и емкость вызывают сдвиг между током и напряжением. Поэтому комплексное число может быть представлено графически. Один вектор – это активная составляющая, другой – реактивная. Сдвиг между током и напряжением характеризуется углом между упомянутыми двумя векторами, выходящими из общей точки. На изображении выше изложенное представляют векторные диаграммы, выполненные красным цветом.

Варианты определения ΔU

Метод векторов

В ходе проектирования электрической сети в основе лежит нагрузка, работоспособность которой необходимо обеспечить. Если кабель будет выбран неправильно, ΔU на нем не позволит правильно работать этой нагрузке. Асинхронные двигатели не достигнут заданных оборотов, трансформаторы на вторичных обмотках не обеспечат номинальные напряжения и т.д., и т.п. Для однофазной сети нагрузка разделяется на активную и реактивную составляющие.

Трехфазная сеть представляется как три самостоятельные однофазные сети. Они называются схемами замещения. Этот метод обеспечивает достаточно точные результаты, если нагрузка симметрична. Если симметрия нарушается, то анализ причин, которые этот процесс вызвали, также можно выполнить, используя этот метод. На основании известных величин можно построить векторную диаграмму и, меняя длину векторов соответственно поставленной задаче, определять те величины, которые необходимы.

Например, известны параметры, которые необходимы для нормальной работы нагрузки. Параметры линии также известны. Следовательно, задача сводится к определению векторного напряжения U1. Шаги, приводящие к появлению искомого вектора, показаны далее.

Длина вектора и его направление определяются исходя из закона Ома и направления вектора напряжения, определяющего ток (векторы тока и напряжения по направлению совпадают). Вектор напряжения, который получается как результат сложения активной и реактивной составляющих нагрузки (IR+IХ), – это и есть ΔU в линии, соединяющей источник напряжения U1 с нагрузкой. Из полученных векторов просто получить также и потери напряжения. Для этого векторы U1 и U2 совмещаются так, чтобы направление обоих было таким же, как у вектора U2. Разница между ними в длине – это будут потери напряжения.

Таблицы Кнорринга

Но заниматься построением векторов довольно-таки нудно. Тем более что за время существования потребности в проектировании электросетей для стандартных ситуаций придуманы решения более быстрые. К ним относятся таблицы Кнорринга. Стандартность ситуации для них состоит в постоянстве напряжения на входе кабеля или иного проводника (переменное напряжение с действующим значением 220 В). Это важно как для одной фазы, так и для трех фаз. То есть в трехфазной электросети нагрузка должна быть симметричной.

Также необходимо располагать величиной сечения токопроводящей жилы (в квадратных миллиметрах), длиной проводника (в метрах) и мощностью в нагрузке (в киловаттах). Получаем произведение мощности на длину, в столбце, начинающемся с подходящего сечения жилы, находим это значение, и в крайнем левом столбце смотрим ΔU на кабеле. Только и всего. Два варианта таблиц для напряжения однофазной и трехфазной электрической сети, а также одна для напряжения 12 В, показанные далее, читатель может использовать для расчетов.

Для всех таблиц принято ограничение – жилы должны быть из меди. Если читателю встретится такое определение, как момент нагрузки, – это как раз и будет число из таблицы Кнорринга для провода, соответствующее произведению мощности на длину.

Точные расчеты по формулам

Если по тем или иным причинам метод векторов и таблицы не устраивают, можно использовать либо формулы, показанные далее, либо калькулятор онлайн, на них основанный. Таких калькуляторов в сети немало, и найти подходящий несложно.

От чего зависят потери тока в электрических сетях

Повышение энергоэффективности является основной задачей проектировщиков и эксплуатационщиков силовой электроники. Потери тока и напряжения связанные с проводами, кабельными муфтами, наконечниками, соединителями являются серьезной проблемой при соединении и распределении напряжения, а также внутри трансформаторов, особенно на частотах, способствующих возникновению вихревых токов.

Потери тока это большие суммы убытка от передачи и распределения напряжения, которые не компенсируются пользователями.

Распределительный сектор рассматривается как проблемное звено во всем энергетическом секторе.

С целью повышения энергоэффективности торговый дом «Скала» сконцентрировался на поставках большого перечня оборудования и устройств силовой электроники.

Сотрудничество с заводами-изготовителями у данной компании позволяет поставлять продукцию от бытовой проводки до сложной оснастки по укладке высоковольтных линий передачи в короткое время. Так поставка уникальной оснастки в виде кабельных чулков по прокладке кабеля в траншеях, колодцах, трубах или металлорукавов для защиты от механических и климатических воздействий не является проблемой. Узкоспециализированное электрокоммуникационное оборудование позволяет смонтировать оборудование с наименьшими затратами.

Типы потерь при передаче тока

Имеются два типа расхода энергии при передаче и распределении напряжения:

  1. Технические потери.
  2. Технологические – из-за погрешностей, недостоверности расчетов, краж.

Технические потери

Технические потери тока обусловлены энергией, рассеиваемой в проводниках, оборудовании, используемом для линии электропередачи, как кабельные муфты, наконечники, соединители, трансформаторы, подлинии электропередачи и распределительные линии. Для снижения утраты тока должны применяться технически исправные электрокоммуникационные устройства.
Технические потери напряжения обычно составляют около половины потерь от распределения, и непосредственно зависят от характеристик и режима работы сети. Основной объем утрат в энергосистеме приходится на физические параметры как активное погонное сопротивление, погонная индуктивность, емкость и проводимость изоляции, затухание и волновое сопротивление. Поэтому распределительные системы должны быть должным образом исправны, чтобы обеспечить утраты в пределах допустимых пределов.

Читать еще:  Выключатель анам как отключить светодиод

Кроме того, неожиданное увеличение нагрузки выражается в увеличении технических потерь выше нормального уровня и приводит к авариям и неисправностям.

Существует два вида технических потерь

1. Постоянные/фиксированные технические потери

Фиксированные потери не изменяются в зависимости от тока и составляют от 25% и 40%. Эти потери принимают форму тепла и шума и происходят до тех пор, пока энергосеть находится под напряжением. Эти энергозатраты в распределительных сетях являются фиксированными.

К основным фиксированным потерям тока в сети можно отнести следующие:

  • из-за тока утечки
  • коронный разряд в виде ионизации воздуха
  • диэлектрические рассеивания энергии
  • утечка в выключенной цепи
  • вызванные непрерывной нагрузкой измерительных элементов и элементов управления

Переменные потери изменяются в зависимости от количества распределяемой электроэнергии и, пропорциональны квадрату тока. Следовательно, увеличение тока на 2% приводит к увеличению затрат более чем на 2%. От 60% до 75% технических или физических затрат в распределительных сетях являются переменными. Переменные уменьшения тока могут быть изменены путем ремонта и модернизации существующих линий. Так при увеличении площади поперечного сечения кабелей для определенной нагрузки затраты будут падать. Это приводит к прямому соглашению между объемом потерь и стоимостью финансовых затрат. Считается, что оптимальный средний коэффициент потерь, обосновывающий стоимость при проектировании энергосистемы, должен быть минимальным.

К переменным потерям относятся:

  • джоулевые потери тока (тепловые) в линиях
  • из-за импедансного сопротивления (переменного тока)
  • вызванные контактным сопротивлением

Основные причины технических потерь

  • Длинные распределительные линии

На практике линии протягиваются на большие расстояния для подачи нагрузок, разбросанных по большим площадям. Таким образом, распределительные линии радиально проложены и обычно простираются на большие расстояния. Это приводит к высокому сопротивлению линии и, следовательно, высоким значениям I 2 R в линии.

  • Бессистемное разрастание субтрансляционной и распределительной систем в новые районы
  • Значительная электрификация сельских районов с помощью длинных линий
  • Недостаточный размер сечения проводников распределительных линий.

Размер сечения проводников следует выбирать исходя из мощности стандартного проводника для поддержания определенного напряжения, но сельские нагрузки обычно рассеяны и обычно питаются радиальными потребилелями. Размер проводника этих фидеров должен быть достаточным.

  • Установка силовых трансформаторов вдали от центров нагрузки
    Если силовые трансформаторы расположить не в центре распределительной системы, то самые дальние потребители получают экстремально низкое напряжение, даже если на трансформаторах поддерживается хороший уровень напряжения. Поэтому, чтобы уменьшить падение напряжения в линии до самых дальних потребителей, силовой трансформатор должен быть расположен в центре нагрузки, чтобы держать падение напряжения в разрешенных пределах.
  • Низкий коэффициент мощности энергосистемы.

Стандартный коэффициент мощности обычно колеблется от 0,6 до 0,7. Низкий коэффициент мощности способствует высоким распределительным падениям тока. Если коэффициент мощности низкий, то потери, пропорциональные квадрату тока, будут больше. Таким образом, падения тока в линии могут быть уменьшены путем улучшения коэффициента мощности.

  • Плохое качество силовой электрофурнитуры

Плохое качество силовой электрофурнитуры вносит значительный вклад в увеличение потерь при распределении. Кабельные муфты, наконечники, соединители, кабели и материалы кабельного монтажа, припой, защита кабеля в земле являются источниками потерь тока. Поэтому количество стыков должно быть сведено к минимуму. Для обеспечения прочных соединений необходимо использовать надлежащие методы соединения. Соединения с предохранителем, изолятором, выключателем и т. д. должны периодически проверяться и поддерживаться в надлежащем состоянии, чтобы избежать искрения и нагрева контактов. Замена поврежденных проводов и соединений также должна производиться своевременно, чтобы избежать любой причины утечки и потери мощности.

  • Фазный ток фидера и балансировка нагрузки

Одним из самых простых способов экономии в распределительной системе является балансировка тока по трехфазным цепям. Балансировка фаз фидера также имеет тенденцию уравновешивать падение напряжения между фазами, давая трехфазным клиентам меньший дисбаланс напряжения. Даже если напряжение по всем фазам выходит одинаковое, то это не значит что у потребителей будет также. Фидеры обычно считаются без перекоса фаз когда величины фазного тока разняться не более чем на 10%. Балансировка и перераспределение нагрузки снизит потери тока. Обычно для устранения устанавливаются дополнительные переключатели нагрузки.

  • Влияние коэффициента нагрузки на потери

Затрачиваемая потребителем энергия зависит от времени суток и года. Жилые дома обычно имеют самый высокий спрос на электроэнергию в вечерние часы. Предприятия промышленности потребляют больше энергии в начале и середине дня. Поскольку текущая нагрузка является основным фактором потерь распределительной мощности, регулирование потребления энергии на более высоком уровне в течение дня помогает снизить пиковые и общие падения энергии. Процент потерь напряжения также снижается за счет повышения коэффициента нагрузки.
Энергоснабжающие компании также используют стоимостные параметры, чтобы повлиять на потребителей. Так в нерабочее время стоимость электроэнергии ниже.

Технологические потери

Нетехнические потери напряжения связаны с показаниями счетчиков, ошибками в показаниях приборов учета, выставлением счетов за потребление энергии клиентами, отсутствием администрирования, финансовыми ограничениями, а также кражами энергии.
Основные причины нетехнических потерь устраняются административным порядком.

Расчёт потерь электроэнергии

Методика расчёта технологических потерь электроэнергии
в линии электропередач ВЛ-04кВ садоводческого товарищества

До какого-то определённого времени необходимость расчёта технологических потерь в линии электропередач, принадлежащей СНТ, как юридическому лицу, или садоводам, имеющим садовые участки в границах какого-либо СНТ, была не нужна. Правление даже не задумывалось об этом. Однако дотошные садоводы или, скорее, сомневающиеся, заставили ещё раз бросить все силы на способы вычисления потерь электроэнергии вЛЭП. Самый простой путь, безусловно — это тупое обращение в компетентную компанию, то бишь, электроснабжающую или мелкую фирмочку, которые и смогут рассчитать для садоводов технологические потери в их сети. Сканирование Интернета позволило разыскать несколько методик расчёта энергопотерь во внутренней линии электропередач применительно к любому СНТ. Их анализ и разбор необходимых значений для вычисления конечного результата позволил отбросить те из них, которые предполагали замер специальных параметров в сети с помощью специального оборудования.

Предлагаемая Вам для использования в садоводческом товариществе методика основана на знании основ передачи электроэнергии по проводам базового школьного курса физики. При её создании были использованы нормы приказа Минпромэнерго РФ № 21 от 03.02.2005 г. «Методика расчёта нормативных потерь электроэнергии в электрических сетях», а также книга Ю.С Железко, А.В Артемьева, О.В. Савченко «Расчёт, анализ и нормирование потерь элекроэнергии в электрических сетях», Москва, ЗАО «Издательство НЦЭНАС», 2008.

Читать еще:  Выключатель с подсветкой описание

Основа для рассматриваемого ниже расчёта технологических потерь в сети взята вот отсюда Методика расчёта потерь Ратуша А. Вы можете воспользоваться ею, изложенной далее. Разница у них в том, что здесь на сайте мы вместе разберём упрощенную методику, которая на простом, вполне реально существующем ТСН «Простор», поможет понять сам принцип применения формул и порядок подстановки в них значений. Далее Вы сможете самостоятельно рассчитать потери для своей существующей в ТСН электросети с любой конфигурацией и сложностью. Т.е. страница адаптирована к ТСН.

Исходные условия для расчётов.

= В линии электропередач используется провод СИП-50, СИП-25, СИП-16 и немного А-35 (алюминиевый, сечением 35мм², открытый без изоляции);

= Для простоты расчёта возьмём усреднённое значение, провод А-35.

У нас в садоводческом товариществе провода разного сечения, что чаще всего и бывает. Кто хочет, разобравшись с принципами расчётов, сможет посчитать потери для всех линий с разным сечением, т.к. сама методика предполагает производство расчёта потерь электроэнергии для одного провода, не 3 фаз сразу, а именно одного (одной фазы).

= Потери в трансформаторе (трансформаторах) не учитываются, т.к. общий счётчик потребляемой электроэнергии установлен после трансформатора;

= Потери трансформатора и подключения к высоковольтной линии нам рассчитала энергоснабжающая организация «Саратовэнерго» а именно РЭС Саратовского района, в поселке «Тепличный». Они составили в среднем (4,97%) 203 кВт.ч в месяц.

= Расчёт производится для выведения максимальной величины потерь электроэнергии;

Произведённые расчёты для максимального потребления помогут перекрыть те технологические потери, к-е не учтены в методике, но, тем не менее, всегда присутствуют. Эти потери достаточно сложно вычислить. Но, так как, они, всё-таки, не так значительны, то ими можно пренебречь.

= Суммарная присоединённая мощность в СНТ достаточна для обеспечения максимальной мощности потребления;

Исходим из того, что при условии включения всеми садоводами своих выделенных каждому мощностей, в сети не происходит снижения напряжения и выделенной электро снабжающей организацией электрической мощности достаточно, чтобы не сгорели предохранители или не выбило автоматы защитного отключения. Выделенная электрическая мощность обязательно прописана вДоговоре электроснабжения.

= Величина годового потребления соответствует фактическому годовому потреблению электроэнергии в СНТ — 49000 кВт/ч;

Дело в том, что, если суммарно садоводы и электроустановки СНТ превышают выделяемое на всех количество электроэнергии, то соответственно расчёт технологических потерь должен уточняться для другого количества потребленных кВт/ч. Чем больше СНТ съест электроэнергии, тем больше будут и потери. Корректировка расчётов в этом случае необходима для уточнения величины платежа за технологические потери во внутренней сети, и последующего утверждения её на общем собрании.

= К электрической сети, через 3 одинаковых по параметрам фидера (длина, марка провода (А-35), электрическая нагрузка), подключено 33 участка (домов).

Т.е. к распределительному щиту СНТ, где расположен общий трёхфазный счётчик, подключены 3 провода (3 фазы) и один нулевой провод. Соответственно к каждой фазе подключены равномерно по 11 домов садоводов, всего 33 домов.

= Длина линии электропередач в СНТ составляет 800 м..

  1. Расчёт потерь электроэнергии по суммарной длине линии.

Для расчёта потерь используется следующая формула:

ΔW = 9,3 . W² . (1 + tg²φ)·Kф²·K L .L

Д F

ΔW — потери электроэнергии в кВт/ч;

W — электроэнергия, отпущенная в линию электропередач за Д (дней), кВт/ч (в нашем примере 49000 кВт/ч или 49х10 6 Вт/ч);

Кф — коэффициент формы графика нагрузки;

КL — коэффициент, учитывающий распределённость нагрузки по линии (0,37 — для линии с рапределённой нагрузкой, т.е. на каждую фазу из трёх подключены по 11 домов садоводов);

L — длина линии в километрах ( в нашем примере 0,8 км);

tgφ — коэффициент реактивной мощности (0,6);

F — сечение провода в мм²;

Д — период в днях (в формуле используем период 365 дней);

Кф² — коэффициент заполнения графика, рассчитывается по формуле:

Kф² = (1 + 2Кз)
3Kз

где Кз — коэффициент заполнения графика. При отсутствии данных о форме графика нагрузки обычно принимается значение — 0,3; тогда: Kф² = 1,78.

Расчёт потерь по формуле выполняется для одной линии фидера. Их 3 по 0,8 километра.

Считаем, что общая нагрузка равномерно распределена по линиям внутри фидера. Т.е. годовое потребление по одной линии фидера равно 1/3 от общего потребления.

Тогда: Wсум. = 3 * ΔW в линии.

Отпущенная садоводам электроэнергия за год составляет 49000 кВт/ч, тогда по каждой линии фидера: 49000 / 3 = 16300 кВт/ч или16,3·10 6 Вт/ч — именно в таком виде значение присутствует в формуле.

ΔWлинии=9,3 . 16,3²·10 6 . (1+0,6²)·1,78·0,37 . 0,8 =
365 35

ΔWлинии= 140,8 кВт/ч

Тогда за год по трём линиям фидера: ΔWсум. = 3 х 140,8 = 422,4 кВт/ч.

  1. Учёт потерь на вводе в дома.

При условии, что все приборы учета потребляемой энергии размещены на опорах ЛЭП, то длина провода от точки присоединения линии, принадлежащей садоводу до его индивидуального прибора учёта составит всего 6 метров (общая длина опоры 9 метров).

Сопротивление провода СИП-16 (самонесущий изолированный провод, сечением 16 мм²) на 6 метров длины составляет всего R = 0,02ом.

Pввода= 4 кВт (примем за расчётную разрешённую электрическую мощность для одного дома).

Рассчитываем силу тока для мощности 4 кВт: Iввода = Pввода/220 = 4000Вт / 220в = 18 (А).

Тогда: dPввода = I² x Rввода = 18² х 0,02 = 6,48Вт — потери за 1 час при нагрузке.

Тогда суммарные потери за год в линии одного подключённого садовода: dWввода = dPввода x Д (часов в год) х Кисп.макс. нагрузки = 6,48 x 8760 x 0,3 = 17029 Вт/ч (17,029 кВт/ч).

Тогда суммарные потери в линиях 33 подключённых садоводов за год составят:
dWввода = 33 х 17,029 кВт/ч = 561,96 кВт/ч

  1. Учёт суммарных потерь в ЛЭП за год:

ΔWсум. итог = 561,96 + 422,4 = 984,36 кВт/ч

ΔWсум.%= ΔWсум / Wсум x 100%= 984,36/49000 х 100%= 2%

Итого: Во внутренней воздушной ЛЭП СНТ протяжённостью 0,8 километра (3 фазы и ноль), проводе сечением 35мм², подключёнными 33 домами, при общем потреблении 49000 кВт/ч электроэнергии в год потери составят 2%

От чего зависят потери тока в электрических сетях

Повышение энергоэффективности является основной задачей проектировщиков и эксплуатационщиков силовой электроники. Потери тока и напряжения связанные с проводами, кабельными муфтами, наконечниками, соединителями являются серьезной проблемой при соединении и распределении напряжения, а также внутри трансформаторов, особенно на частотах, способствующих возникновению вихревых токов.

Потери тока это большие суммы убытка от передачи и распределения напряжения, которые не компенсируются пользователями.

Распределительный сектор рассматривается как проблемное звено во всем энергетическом секторе.

Читать еще:  Выключатели для коридорного освещения

С целью повышения энергоэффективности торговый дом «Скала» сконцентрировался на поставках большого перечня оборудования и устройств силовой электроники.

Сотрудничество с заводами-изготовителями у данной компании позволяет поставлять продукцию от бытовой проводки до сложной оснастки по укладке высоковольтных линий передачи в короткое время. Так поставка уникальной оснастки в виде кабельных чулков по прокладке кабеля в траншеях, колодцах, трубах или металлорукавов для защиты от механических и климатических воздействий не является проблемой. Узкоспециализированное электрокоммуникационное оборудование позволяет смонтировать оборудование с наименьшими затратами.

Типы потерь при передаче тока

Имеются два типа расхода энергии при передаче и распределении напряжения:

  1. Технические потери.
  2. Технологические – из-за погрешностей, недостоверности расчетов, краж.

Технические потери

Технические потери тока обусловлены энергией, рассеиваемой в проводниках, оборудовании, используемом для линии электропередачи, как кабельные муфты, наконечники, соединители, трансформаторы, подлинии электропередачи и распределительные линии. Для снижения утраты тока должны применяться технически исправные электрокоммуникационные устройства.
Технические потери напряжения обычно составляют около половины потерь от распределения, и непосредственно зависят от характеристик и режима работы сети. Основной объем утрат в энергосистеме приходится на физические параметры как активное погонное сопротивление, погонная индуктивность, емкость и проводимость изоляции, затухание и волновое сопротивление. Поэтому распределительные системы должны быть должным образом исправны, чтобы обеспечить утраты в пределах допустимых пределов.

Кроме того, неожиданное увеличение нагрузки выражается в увеличении технических потерь выше нормального уровня и приводит к авариям и неисправностям.

Существует два вида технических потерь

1. Постоянные/фиксированные технические потери

Фиксированные потери не изменяются в зависимости от тока и составляют от 25% и 40%. Эти потери принимают форму тепла и шума и происходят до тех пор, пока энергосеть находится под напряжением. Эти энергозатраты в распределительных сетях являются фиксированными.

К основным фиксированным потерям тока в сети можно отнести следующие:

  • из-за тока утечки
  • коронный разряд в виде ионизации воздуха
  • диэлектрические рассеивания энергии
  • утечка в выключенной цепи
  • вызванные непрерывной нагрузкой измерительных элементов и элементов управления

Переменные потери изменяются в зависимости от количества распределяемой электроэнергии и, пропорциональны квадрату тока. Следовательно, увеличение тока на 2% приводит к увеличению затрат более чем на 2%. От 60% до 75% технических или физических затрат в распределительных сетях являются переменными. Переменные уменьшения тока могут быть изменены путем ремонта и модернизации существующих линий. Так при увеличении площади поперечного сечения кабелей для определенной нагрузки затраты будут падать. Это приводит к прямому соглашению между объемом потерь и стоимостью финансовых затрат. Считается, что оптимальный средний коэффициент потерь, обосновывающий стоимость при проектировании энергосистемы, должен быть минимальным.

К переменным потерям относятся:

  • джоулевые потери тока (тепловые) в линиях
  • из-за импедансного сопротивления (переменного тока)
  • вызванные контактным сопротивлением

Основные причины технических потерь

  • Длинные распределительные линии

На практике линии протягиваются на большие расстояния для подачи нагрузок, разбросанных по большим площадям. Таким образом, распределительные линии радиально проложены и обычно простираются на большие расстояния. Это приводит к высокому сопротивлению линии и, следовательно, высоким значениям I 2 R в линии.

  • Бессистемное разрастание субтрансляционной и распределительной систем в новые районы
  • Значительная электрификация сельских районов с помощью длинных линий
  • Недостаточный размер сечения проводников распределительных линий.

Размер сечения проводников следует выбирать исходя из мощности стандартного проводника для поддержания определенного напряжения, но сельские нагрузки обычно рассеяны и обычно питаются радиальными потребилелями. Размер проводника этих фидеров должен быть достаточным.

  • Установка силовых трансформаторов вдали от центров нагрузки
    Если силовые трансформаторы расположить не в центре распределительной системы, то самые дальние потребители получают экстремально низкое напряжение, даже если на трансформаторах поддерживается хороший уровень напряжения. Поэтому, чтобы уменьшить падение напряжения в линии до самых дальних потребителей, силовой трансформатор должен быть расположен в центре нагрузки, чтобы держать падение напряжения в разрешенных пределах.
  • Низкий коэффициент мощности энергосистемы.

Стандартный коэффициент мощности обычно колеблется от 0,6 до 0,7. Низкий коэффициент мощности способствует высоким распределительным падениям тока. Если коэффициент мощности низкий, то потери, пропорциональные квадрату тока, будут больше. Таким образом, падения тока в линии могут быть уменьшены путем улучшения коэффициента мощности.

  • Плохое качество силовой электрофурнитуры

Плохое качество силовой электрофурнитуры вносит значительный вклад в увеличение потерь при распределении. Кабельные муфты, наконечники, соединители, кабели и материалы кабельного монтажа, припой, защита кабеля в земле являются источниками потерь тока. Поэтому количество стыков должно быть сведено к минимуму. Для обеспечения прочных соединений необходимо использовать надлежащие методы соединения. Соединения с предохранителем, изолятором, выключателем и т. д. должны периодически проверяться и поддерживаться в надлежащем состоянии, чтобы избежать искрения и нагрева контактов. Замена поврежденных проводов и соединений также должна производиться своевременно, чтобы избежать любой причины утечки и потери мощности.

  • Фазный ток фидера и балансировка нагрузки

Одним из самых простых способов экономии в распределительной системе является балансировка тока по трехфазным цепям. Балансировка фаз фидера также имеет тенденцию уравновешивать падение напряжения между фазами, давая трехфазным клиентам меньший дисбаланс напряжения. Даже если напряжение по всем фазам выходит одинаковое, то это не значит что у потребителей будет также. Фидеры обычно считаются без перекоса фаз когда величины фазного тока разняться не более чем на 10%. Балансировка и перераспределение нагрузки снизит потери тока. Обычно для устранения устанавливаются дополнительные переключатели нагрузки.

  • Влияние коэффициента нагрузки на потери

Затрачиваемая потребителем энергия зависит от времени суток и года. Жилые дома обычно имеют самый высокий спрос на электроэнергию в вечерние часы. Предприятия промышленности потребляют больше энергии в начале и середине дня. Поскольку текущая нагрузка является основным фактором потерь распределительной мощности, регулирование потребления энергии на более высоком уровне в течение дня помогает снизить пиковые и общие падения энергии. Процент потерь напряжения также снижается за счет повышения коэффициента нагрузки.
Энергоснабжающие компании также используют стоимостные параметры, чтобы повлиять на потребителей. Так в нерабочее время стоимость электроэнергии ниже.

Технологические потери

Нетехнические потери напряжения связаны с показаниями счетчиков, ошибками в показаниях приборов учета, выставлением счетов за потребление энергии клиентами, отсутствием администрирования, финансовыми ограничениями, а также кражами энергии.
Основные причины нетехнических потерь устраняются административным порядком.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector