Gc-helper.ru

ГК Хелпер
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Расчет кабеля по току утечки

Утечка тока

Подписка на рассылку

  • ВКонтакте
  • Facebook
  • ok
  • Twitter
  • YouTube
  • Instagram
  • Яндекс.Дзен
  • TikTok

По одному из определений из открытых источников утечка тока – это ток между находящейся под напряжением фазой и землей вследствие снижения сопротивления изоляции. Или, проще говоря, это ток, который протекает по нежелательным проводящим путям в нормальных условиях эксплуатации.

Почему проверка тока утечки становится актуальной необходимостью, а в некоторых случаях и неизбежностью разберемся далее.

Вообще ток возникает там, где создается для его протекания замкнутая цепь. Замкнутая через заземленные конструкции, через тело человека, через материалы и вещества в различном физическом состоянии, способные проводить ток, который тем больше, чем меньше омическое сопротивление на участке цепи и ниже сопротивление изоляции токоведущих частей под напряжением.

Утечку тока можно обнаружить случайно, например, по расходу электроэнергии, зафиксированному прибором учета при выключенных электроприборах, по непонятным пощипываниям при прикосновении к корпусам электроприборов, по срабатыванию устройства дифференциального тока.

Поскольку режим этот не нормальный, как определились выше, то, как найти утечку тока? Для этого существует несколько доступных способов.

Косвенно для приближенной оценки ситуации в домашних условиях подойдет индикаторная отвёртка, которая при контакте с корпусом «подозреваемого» бытового устройства известит световой индикацией о наличии потенциала. Например, при повреждении изоляции стиральной машины, напряжение может появиться даже на смесителе, который вовлекается в цепочку за счёт общего водопровода. В этом случае стоит обязательно проверить надежность защитного заземления с заземляющим контактом вилки машинки.

Для точных измерений можно воспользоваться мультиметром в режиме измерения тока. Желательно перед этим в проверяемых цепях вытащить вилки электроприборов, а работу производить в щите. Чтобы не отсоединять провода, проще всего приложить щупы мультиметра к верхнему и нижнему контакту автоматического выключателя проверяемой цепи, а только потом отключить автомат. Мультиметр утечку тока определит, но единственный минус – на минимальное время цепь останется без защиты. Потом автомат включается обратно, после чего можно убрать щупы.

Значительно проще воспользоваться токоизмерительными клещами. Устройством можно измерить ток утечки в начале линии в щитке, обхватив разъемным магнитопроводом одновременно фазный и нулевой проводники. При таком способе при отключенных потребителях оценивается величина тока утечки в проводке. Сами клещи должны иметь для таких измерений подходящую чувствительность либо быть специальных типов под эти задачи.

Далее можно подобное измерение произвести непосредственно в месте подключения к сети в рабочем режиме конкретного электроприбора, правда, для этого придется сделать переходник с выделенными жилами фазы и ноля.

При этом следует понимать, что даже в исправной проводке и оборудовании токи утечки так или иначе есть, но их суммарная величина в линии не должна превышать допустимых значений.

Проверка УЗО и Диф автоматов током утечки — расчет номиналов для проверки

Пришла тут в голову мысли сделать приборчик для проверки УЗО и Диф автоматов на срабатывание по току утечки.

По большому счету «городить» для этой цели прибор смысла не имеет. но хочется сделать все по «феншую» 🙂

Ниже мы рассмотрим вариант расчета на проверку УЗО / ДИФ автомата по току утечки более точно.
Этот способ позволит нам узнать конкретное значение тока утечки при котором срабатывает конкретный проверяемый модуль УЗО / ДИФ автомат.

Проверка УЗО по току утечки — IΔ

Для этого используется сопротивление — резистор.
Один конец резистора подключается на выход фазного провода УЗО, а второй — ко входу нулевого провода.

Для того, чтобы знать какой номинал сопротивления нужен для проверки того или иного УЗО используем закон Ома:

I — сила тока
U — напряжение
R — сопротивление

Отсюда мы при необходимости можем также узнать напряжение и сопротивление:

Давайте рассчитаем необходимое сопротивление нагрузки для проверки УЗО / ДИФ автоматов на разные токи.
Как правило на дачах используются устройства на токи срабатывания в 10, 30, 100 и 300 mA.
Для этого используем нашу формулу: R (Ом)= U (Вольт) / I (Ампер)
Результат будет в Омах, которые мы переводим в килоомы произведя деление на 1000.

Как вариант можно вместо Ампер использовать текущие значения в миллиампер — mA, тогда полученное значение будет выводиться сразу в килоомах.
Я буду использовать именно этот вариант.

УЗО на 10 mA

R = 220В / 0,01А — результат будет в Ом
R = 22000 = 22кОм (22000 / 1000)

Как вариант вычисления о котором говорилось выше:
R = 220В / 10mA — результат будет в кОм
R = 22кОм
Для того, чтобы УЗО сработало от тока утечки в 10mA необходимо сопротивление нагрузки равное 22кОм.
Для других токов рассчитывает по такой же схеме:

УЗО на 30 mA
R = 220 / 30 = 7,3 кОм
Для того, чтобы УЗО сработало от тока утечки в 30mA необходимо сопротивление нагрузки равное 7,3кОм.

УЗО на 100 mA
R = 220 / 100 = 2,2 кОм
Для того, чтобы УЗО сработало от тока утечки в 100mA необходимо сопротивление нагрузки равное 2,2кОм.

УЗО на 300 mA
R = 220 / 300 = 733 Ом
Для того, чтобы УЗО сработало от тока утечки в 300mA необходимо сопротивление нагрузки равное 733Ом.

К сожалению это значит, что в зависимости от партии, настройки конкретное УЗО на наши 30mA может и не сработать от среднего сопротивления равное 7,3 кОм.

Давайте высчитаем крайние диапазоны по току срабатывания для каждого номинала нашего УЗО / ДИФ автомата:

Ток срабатывания 10mA (5 — 10mA)
Реальный диапазон срабатывания по току утечки от 4,5mA до 12mA

Ток срабатывания 30mA (15 — 30mA)
Реальный диапазон срабатывания по току утечки от 13,5mA до 36mA

Ток срабатывания 100mA (50 — 100mA)
Реальный диапазон срабатывания по току утечки от 45mA до 120mA

Читать еще:  Как разместить выключатель подсветки кухни

Ток срабатывания 300mA (150 — 300mA)
Реальный диапазон срабатывания по току утечки от 135mA до 360mA

А теперь рассчитаем нижнюю и верхнюю границу сопротивления (R) для каждого диапазона токов утечки.
Rmax = U / Imin
Rmin = U / Imax

Ток срабатывания 10mA (4,5mA — 12mA)
Rmax = 220 / 4,5 = 48,88 кОм
Rmin = 220 / 12 = 18,3 кОм — при таком сопротивлении нагрузки УЗО / ДИФ автомат на 10 mA должно гарантированно сработать

Ток срабатывания 30mA (13,5mA — 36mA)
Rmax = 220 / 13,5 = 16,29 кОм
Rmin = 220 / 36 = 6,1 кОм — при таком сопротивлении нагрузки УЗО / ДИФ автомат на 30 mA должно гарантированно сработать

Ток срабатывания 100mA (45mA — 120mA)
Rmax = 220 / 45 = 4,88 кОм
Rmin = 220 / 120 = 1,83 кОм — при таком сопротивлении нагрузки УЗО / ДИФ автомат на 100 mA должно гарантированно сработать

Ток срабатывания 300mA (135mA — 360mA)
Rmax = 220 / 135 = 1,62 кОм
Rmin = 220 / 360 = 0,611 кОм — при таком сопротивлении нагрузки УЗО / ДИФ автомат на 300 mA должно гарантированно сработать

Что далее?
А далее мы сделаем возможность плавной регулировки от нижнего, гарантированного срабатывания УЗО / ДИФ автомата до его второй крайней границы.
Как это сделать?

Смотрим на примере получившихся расчетов для УЗО на 10mA

10 mA (ток срабатывания 4,5mA — 12mA)

Верхняя граница сопротивления — Rmax = 48,88 кОм
Нижняя граница сопротивления — Rmin = 18,3 кОм

Таким образом мы можем взять ПОСТОЯННЫЙ резистор с наименьшим сопротивлением равный 18кОм и последовательно ему подключить резистор сопротивлением 48,8 — 18,3 = 30,5кОм
Это позволит нам плавно изменять величину сопротивления в пределах допустимых токов утечки УЗО / ДИФ автомата данного номаинала — 10mA.

Но и это еще не все.
Нам необходимо рассчитать мощность конкретного резистора который мы будем использовать.

Формула расчета:
1
Мощность выделяемая на каждом из резисторов рассчитывается по формуле: P = I²(A) * R(кОм) * 1000 в случае, если значение тока применяется в Амперах, а сопротивление в кОмах

2
Если вы в формуле применяете сопротивление в Омах, а ток в mA, то надо будет не умножать, а делить на 1000 и формула расчета будет такая:
P резистора = I²(mA) * R(Ом) / 1000

3
В случае же использования значения тока в А, а сопротивления в Омах, формула будет уже без какого либо дополнительного коэффициента: P резистора = I²(A) * R(Ом)

Ранее у нас получилось два значения сопротивления — Rmin=18кОм и Rmax=30,5кОм
P постоянного резистора = (0,012*0,012) * 18 * 1000 = 2,59 Вт
P переменного резистора = (0,0045*0,0045) * 30,5 * 1000 = 0,617 Вт

Получается, что нам необходимо иметь:

Используем ближайшее значение переменного резистора в большую сторону — 33кОм
Если не удалось найти нужного значения постоянного резистора, то либо составляем его их нескольких последовательно соединенных сопротивлений сумма сопротивлений которых даст нам нужное значение, либо используем один резистор чуть меньшего номинала.
Если разница номиналов отличается достаточно сильно, то необходимо заново рассчитать выделяемую на резисторах мощность.
Лучше всего брать большую мощность для запаса.

По данной методике рассчитываем постоянный и переменный резистор и их мощность для значений 30mA, 100mA и 300mA

30mA (ток срабатывания 13,5mA — 36mA)

Верхняя граница сопротивления — Rmax = 16,29 кОм
Нижняя граница сопротивления — Rmin = 6,1 кОм — значение постоянного сопротивления
Номинал переменного резистора: Rmax — Rmin = 16,29 — 6,1 = 10 кОм

P постоянного резистора = Imax² * Rmin * 1000
P переменного резистора = Imin² * Rmax * 1000

P постоянного резистора = (0,036*0,036) * 6,1 * 1000 = 7,9 Вт
P переменного резистора = (0,0135*0,0135) * 10 * 1000 = 1,8 Вт

100mA (ток срабатывания 45mA — 120mA)

Верхняя граница сопротивления — Rmax = 4,88 кОм
Нижняя граница сопротивления — Rmin = 1,83 кОм — значение постоянного сопротивления
Номинал переменного резистора: Rmax — Rmin = 4,88 — 1,83 = 3 кОм

P постоянного резистора = Imax² * Rmin * 1000
P переменного резистора = Imin² * Rmax * 1000

P постоянного резистора = (0,12*0,12) * 1,83 * 1000 = 26 Вт
P переменного резистора = (0,045*0,045) * 3 * 1000 = 6 Вт

300mA (ток срабатывания 135mA — 360mA)

Верхняя граница сопротивления — Rmax = 1,62 кОм
Нижняя граница сопротивления — Rmin = 0,611 кОм — значение постоянного сопротивления
Номинал переменного резистора: Rmax — Rmin = 1,62 — 0,611 = 1 кОм

P постоянного резистора = Imax² * Rmin * 1000
P переменного резистора = Imin² * Rmax * 1000

P постоянного резистора = (0,36*0,36) * 0,611 * 1000 = 79 Вт
P переменного резистора = (0,135*0,135) * 1 * 1000 = 18 Вт

Как было сказано выше, номиналы резисторов выбираются как можно точнее к получившимся результатам.
Особенно это касается постоянных резисторов — их можно взять чуть меньшего номинала.
Переменные резисторы можно взять чуть большего номинала.

Методика измерения УЗО / ДИФ автомата на срабатывание по току утечки

Получившиеся резисторы одной частью подключаются к фазному выходу УЗО, а вторая часть подключается в нулевому входу УЗО.
Переменный резистор устанавливается в максимальное свое значение.
Подается напряжение питания 220 вольт на вход УЗО и переменным резистором потихоньку уменьшаем значение его сопротивления до момента срабатывания УЗО / ДИФ автомата.

Отключаем УЗО от сети 220 вольт.
Измеряем получившееся общее сопротивление наших резисторов и вычисляем ток утечки при котором сработало наше УЗО:
I = U / R

Например мы проверяли три УЗО на 10mA.
Первое сработало при сопротивлении 38,8кОм — получается ток срабатывания 220 / 38,8 = 5,67mA
Второе сработало при сопротивлении 30кОм — получается ток срабатывания 220 / 30 = 7,3mA
Третье сработало при сопротивлении 35,1кОм — получается ток срабатывания 220 / 35,1 = 6,26mA

Поскольку УЗО на 10mA может срабатывать в пределах от 4,5 до 12mA то можно сказать, что проверенные УЗО срабатывают в данном диапазоне.

Для себя я решил сделать приборчик для проверки УЗО / ДИФ автоматов по току утечки комбинированный в котором будет использоваться два переменных резистора и несколько постоянных для того, чтобы сгруппировать проверяемые диапазоны токов утечки на:

Читать еще:  Bd9397efv уменьшить ток подсветки

10mA — 30mA
и
100mA — 300mA

Для этого я использовал расчеты приведенные ниже.

Расчет номиналов резисторов и их мощности для диапазона измерений тока утечки от 10 до 30 mA

10mA — 30mA (ток утечки от 4,5 mA до 36 mA)
R max — 4,5 mA — 48,8 кОм
R min — 36 mA — 6,1 кОм — гарантированное срабатывание УЗО для 30mA
R переменного резистора = 48,8 — 6,1 = 42,7 кОм

Р постоянного резистора = Imax²·R = (0,036)²·6,1·1000 = 7,9 Вт
Р регулируемого резистора = Imin²·R = (0,0045)²·42,7·1000 = 0,86 Вт

Расчет номиналов резисторов и их мощности для диапазона измерений тока утечки от 100 до 300 mA

100mA — 300mA (ток утечки от 45 mA — 360 mA)
R max — 45 mA — 4,8 кОм
R min — 360 mA — 0,61 кОм — гарантированное срабатывание УЗО для 300mA
R переменного резистора = 4,8 — 0,61 = 4,19 кОм

Р постоянного резистора = Imax²·R = (0,36)²·0,61·1000 = 79 Вт
Р переменного резистора = Imin²·R = (0,045)²·4,19·1000 = 8,48 Вт

Расчет тока утечки между двумя жилами коаксиального кабеля

Задачи

Задача 1

При заданном векторе плотности тока

δ= 4x ×1x + 3y ×1y — 7z ×1z , ( А/мм 2 )

определить значение потенциала φ (В) вида φ= Ax2 + By2 + Cz2 в точке с

координатами x=3 (м), y=2 (м), z=1 (м) при известной удельной проводимости среды γ=10·10 6 (1/Ом·м).

Решение. Переведем заданный вектор плотности тока δ в (А/м 2 ) и

по закону Ома в дифференциальной форме запишем вектор напряженности:

δ =0,4x 1x+ 0,3y 1y+ 0,7z 1z ,).

Далее на основании уравнения

E=-gradφ →…

В результате зависимость для потенциала будет следующей

j= Ax2 + By2 + Cz2 = -0,2x2 — 0,15y2 + 0,35z2 , (В)

тогда искомое значение потенциала в точке с координатами x=3 (м),y=2 (м), z=1 (м) составит:

j = -0,2 × (3)2 — 0,15× (2)2 + 0,35× (1)2 = -2,05 (В).

Задача 2.

Рассчитать ток утечки между двумя жилами коаксиального кабеля. Изоляция выполнена двухслойной из несовершенного диэлектрика (удельные проводимости g1 = 5·10 -8 См/м и g2 = 2·10 -8 См/м, относительные диэлектриче-ские проницаемости er1 = 2 и er2 = 5). Напряжение U = 10 кВ. Геометрические размеры – r1 = 1 мм, r2 = 2 мм, r3 = 3 мм.

Найти удельные тепловые потери в окрестности точки М, проводимости и ёмкости между телами, построить схему замещения системы. Кабель считать весьма протяжённым, а расчеты выполнить на единицу длины.

Дополнительно определить предельно возможную длину кабеля как линии электропередачи.

Воспользуемся аналогией между электрическим полем в проводящей среде и электростатическим. ёмкости слоёв данного кабеля:

Проводимости слоёв и всего кабеля на единицу длины:

g10 = = = 0,454·10 -6 /м;

g20 = = = 0,310·10 -6 /м;

g = = = 0,1842 мкСм/м.

U2
U1
g02
C01
I
U
g01
C02

Электрическая схема замещения устройства.

Плотность тока в окрестности точки М:

d = i/(2pr2) = 1,841·10 -3 /(2p ·2·10 -3 ) = 0,147 А/м 2 ;

Удельные тепловые потери в окрестности точки М в слоях изоляции по закону Джоуля-Ленца :

p1 = d 2 /g1 = 0,147 2 /(5·10 -8 ) = 0,432·10 6 Вт/м 3 = 0,432 МВт/м 3 ;

p2 = d 2 /g2 = 0,147 2 /(2·10 -8 ) = 1,08·10 6 Вт/м 3 = 1,08 МВт/м 3 .

Задача 3. Заземлитель в виде шара

Заземлитель в виде шара расположен на сравнительно не­большой глубине h, соизмеримой с его радиусом R.

Применим к решению задачи метод зеркальных отображений. Заменим в верхней полуплоскости диэлектрик проводящей средой γ и зеркально расположим там такой же заземлитель, при этом граничные усло­вия на поверхности земли не из­менятся (линии вектора Е направлены по каса­тельной вдоль поверхности). Заменим токи, стекающие с поверхностей обоих заземлителей, равными по величине точечными токами, растекающимися из электрических центров 1 и 2, которые будут смещены относительно геометрических центров так, чтобы сохранились прежними граничные условия на по­верх­ности шаров (поверхности должны остаться эквипотенциальными с потен­циалом φ=U).

После определения положения электрических центров расчет па­раметров поля в произ­вольной точке n производится по методу наложения:

При соотношении h>>R потенциал на поверхности заземлителя будет ра­вен:

, откуда следует формула для определения сопротивления заземлителя:

Задача 4.

Определить шаговое напряжение на заданном расстоянии х от центра опоры высоковольтной ЛЭП при коротком замыкании одной из фаз линии на опору.

Для упрощения расчетов будем считать, что заземлитель опоры имеет форму полу­шара с радиусом R. Заменим диэлектрик в верхней части пространства проводящей средой γ, а заземлитель дополним зеркальным отображе­нием до полного шара. После таких преоб­разований решение задачи сводится к расчету поля шарового заземлителя:

где — фазное напряжение ЛЭП, R – радиус заземлителя (фундамента) опоры.

|следующая лекция ==>
Методы расчета электрических полей постоянного тока|Уравнения магнитного поля в интегральной и дифференциальной формах

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Теоретические основы электрических кабелей

4-5. Расчет кабеля на допустимые токи нагрузки

Предельно допустимые токовые нагрузки на кабель зависят от допустимой температуры нагрева кабеля или провода в процессе эксплуатации, при которой изоляция не подвергается быстрому старению и не снижаются ее механическая прочность и эластичность. За допустимую температуру принимают температуру токопроводящей жилы, не превышающую допустимой температуры нагрева изоляции (табл. 4-2). Поэтому тепловой расчет кабелей сводится к определению температуры токопроводящей жилы с учетом потерь в жилах, изоляции, оболочках и броне. При этом учитывают тепловые сопротивления кабеля и окружающей среды, а также колебания температуры окружающей среды за счет сезонных изменений температуры и посторонних источников тепла.

Для наглядности расчета допустимых нагрузок прибегают к построению схемы замещения тепловых сопротивлений и потоков для конкретных конструкций кабеля и условий прокладки. На рис. 4-7 приведены схемы замещения одножильного кабеля в воздухе, трехжильного кабеля в стальной трубе с маслом под давлением для прокладки в земле и трехжильного кабеля с поясной изоляцией в канале блока. Потери в токопроводящей жиле на единицу длины кабеля при постоянном токе

Читать еще:  Автоматический выключатель освещения аво 01м

и при переменном токе

где Rж — активное сопротивление жилы (переменному току) с учетом поверхностного эффекта и эффекта близости.

Диэлектрические потери в изоляции кабеля

Превышение температуры токопроводящей жилы над температурой окружающей среды в одножильном кабеле, проложенном в воздухе,

Допустимый ток нагрузки одножильного кабеля

где Тдоп — максимально допустимая температура жилы (табл. 4-2); kр — отношение потерь в оболочке к потерям в жиле.

Превышение температуры жилы трехжильного кабеля низкого напряжения над температурой поверхности блока Тбл, проложенного в земле:

Допустимый ток нагрузки этого кабеля

Превышение температуры жил маслонаполненного кабеля высокого давления в трубопроводе над температурой земли, окружающей трубопровод,

Допустимый ток нагрузки

где kак — отношение потерь в экране к потерям в жиле; kт — отношение потерь в трубопроводе к потерям в трех жилах кабеля. Отношение допустимого тока нагрузки на кабель, проложенный в воздухе, к току нагрузки кабеля, проложенного в земле,

откуда допустимый ток нагрузки кабеля при прокладке в воздухе

Разновидностью подземной прокладки является размещение кабелей в бетонных блоках или асбошиферных трубах, находящихся в земле. При определении допустимого тока нагрузки в этом случае учитывают нагрев кабеля относительно воздуха в блоке и нагрев самого блока относительно окружающего его слоя грунта. Вследствие эксцентричного положения кабеля в канале блока температуры наружной поверхности оболочки кабеля в верхней и нижней частях различны, но разница редко превосходит 1°С

Ток нагрузки кабеля в блоке зависит от формы блока, числа каналов в нем и взаимного расположения каналов с размещенными в них кабелями. При расположении кабелей в два ряда все кабели в блоке охлаждаются одинаково хорошо, а при расположении их в виде квадрата хорошо охлаждаются только кабели, лежащие на периферии. Кроме того, внутренние кабели подогревают наружные, уменьшая их допустимую нагрузку. Бетонный блок с кабелями имеет большую постоянную времени нагрева, поэтому он нагревается длительное время. При уменьшении нагрузки температура кабеля не будет изменяться (понижаться) пропорционально квадрату тока в жилах, так как нагретый блок будет подогревать кабель. Отношение разности температур внутренней стенки канала и окружающего блок грунта к среднесуточным тепловым потерям во всех кабелях блока называют тепловой постоянной канала блока:

Тепловую постоянную при коэффициенте нагрузки 50% можно вычислить по формуле

где N — число каналов или труб по высоте блока; М — число наружных каналов блока.

В большинстве случае значение Н для блоков разной формы находится в пределах 20-40 град o см/вт; обычно его принимают равным 30 градoсм/вт. При вычислении среднесуточных потерь значение тока нагрузки принимают равным среднеквадратичному значению суточной нагрузки. Температура блока

При определении пиковой нагрузки кабеля тепловую постоянную умножают на отношение средних суточных потерь к максимальным потерям, обычно равное для линейных кабелей 0,5-0,65, а для генераторных кабелей 0,8-0,9. Ток перегрузки вычисляют по приближенной формуле

где m=I/Iдоп; I — ток в кабеле, а; Iдоп — длительно допустимый ток в кабеле, а.

Установившаяся температура от тока перегрузки Iпер

Установившаяся температура от тока нагрузки

Допустимый ток перегрузки для заданного времени

Зарядный ток трехжильных кабелей с поясной изоляцией

где ил — номинальное линейное напряжение, в.

Увеличений пропускной способности кабелей на напряжение 220 кв и выше путем увеличения сечения токопроводящих жил возможно только до определенного предела, а далее — при применении искусственного охлаждения. Объясняется это тем, что с увеличением сечения жил увеличиваются объем изоляции и соответственно диэлектрические потери в них. Охлаждение кабеля можно осуществлять маслом или водой. При охлаждении маслом используется канал в жиле кабеля или промежутки между жилами в трубопроводе; обратный поток масла пропускается по дополнительной линии, проходящей через теплообменник для охлаждения. При охлаждении водой в непосредственной близости к кабелям прокладываются трубы, по которым циркулирует вода; при этом происходит уменьшение величины эффективного теплового сопротивления среды, окружающей кабель, и появляется возможность увеличения его нагрузки.

В случае, если Вы не нашли информации по интересующей Вас продукции, обращайтесь на форум и Вы непременно получите ответ на поставленный вопрос. Либо воспользуйтесь формой для обращения к администрации портала.

Для справки: Раздел «Справочник» на сайте RusCable.Ru предназначен исключительно для ознакомительных целей. Справочник составлен путём выборки данных из открытых источников, а также благодаря информации, поступающей от заводов-изготовителей кабельной продукции. Раздел постоянно наполняется новыми данными, а также совершенствуется для удобства в использовании.

Список использованной литературы:

Электрические кабели, провода и шнуры.
Справочник. 5-е издание, переработанное и дополненное. Авторы: Н.И.Белоруссов, А.Е.Саакян, А.И.Яковлева. Под редакцией Н.И.Белоруссова.
(М.: Энергоатомиздат, 1987, 1988)

«Кабели оптические. Заводы-изготовители. Общие сведения. Конструкции, оборудование, техническая документация, сертификаты»
Авторы: Ларин Юрий Тимофеевич, Ильин Анатолий Александрович, Нестерко Виктория Александровна
Год издания 2007. Издательство ООО «Престиж».

Справочник «Кабели, провода и шнуры».
Издательство ВНИИКП в семи томах 2002 год.

Кабели, провода и материалы для кабельной индустрии: Технический справочник.
Сост. и редактирование: Кузенев В.Ю., Крехова О.В.
М.: Издательство «Нефть и газ», 1999

Кабельные изделия. Справочник
Автор: Алиев И.И., издание 2-е, 2004

Монтаж и ремонт кабельных линий. Справочник электромонтажника
Под редакцией А.Д. Смирнова, Б.А. Соколова, А.Н. Трифонова
2-е издание, переработанное и дополненное, Москва, Энергоатомиздат, 1990

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector