Gc-helper.ru

ГК Хелпер
3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Почему диэлектрики не проводят электрический ток а проводники проводят

Диэлектрики и проводники в электрическом поле. Поле внутри проводников и диэлектриков

Лекция № 14 Диэлектрики и проводники в электрическом поле. Поляризация.

1 Проводники в электрическом поле

Если полюса батарейки замкнуть металлической проволокой, по ней пойдёт электрический ток. Заменим проволоку стеклянной палочкой — никакого тока не возникнет. Металл является проводником, а стекло — диэлектриком.

Проводники отличаются от диэлектриков наличием свободных зарядов — заряженных частиц, положение которых не связано с какой-то точкой внутри вещества. Свободные заряды приходят в движение под действием электрического поля и могут перемещаться по всему объёму проводника.

Проводники — это в первую очередь металлы. В металлах свободными зарядами являются свободные электроны. Откуда они там берутся? Это особенность металлической связи. Дело в том, что валентный электрон, находящийся на внешней электронной оболочке атома металла, весьма слабо связан с атомом. При взаимодействии атомов металла их валентные электроны покидают свои оболочки, «отправляясь в путешествие» по всему пространству металла.

Проводниками являются также электролиты. Так называются растворы и расплавы, свободные заряды в которых возникают в результате диссоциации молекул на положительные и отрицательные ионы. Бросим, например, в стакан воды щепотку поваренной соли. Молекулы NaCl распадутся на ионы Na+ и Cl−. Под действием электрического поля эти ионы начнут упорядоченное движение, и возникнет электрический ток.

Природная вода, даже пресная, является проводником из-за растворённых в ней солей6 (но, конечно, не таким хорошим, как металлы). Человеческое тело в основным состоит из воды, в которой также растворены соли (хлориды натрия, калия, кальция, магния). Поэтому наше тело также служит проводником электрического тока.

Из-за наличия свободных зарядов, способных перемещаться по всему объёму, проводники обладают некоторыми характерными общими свойствами.

1.1 Поле внутри проводника

Первое общее свойство проводников в электростатическом поле состоит в том, что напряжённость поля внутри проводника везде равна нулю.

Докажем от противного, как в математике. Предположим, что в какой-то области проводника имеется электрическое поле. Тогда под действием этого поля свободные заряды проводника начнут направленное движение. Возникнет электрический ток — а это противоречит тому, что мы находимся в электростатике.

Конечно, такое рассуждение не оставляет ощущения удовлетворённости. Хотелось бы понять, почему обнуляется поле внутри проводника. Давайте попробуем.

Рассмотрим незаряженный проводящий шар, помещённый во внешнее электростатическое поле E. Для простоты считаем это поле однородным, но наши рассуждения останутся верными и в общем случае.

Под действием электрического поля E свободные электроны нашего шара скапливаются в левом его полушарии, которое заряжается отрицательно. Справа остаётся некомпенсированный положительный заряд. Возникновение этих зарядов, как вы помните, называется электростатической индукцией: заряды на поверхности проводника индуцируются (т. е. наводятся) внешним электростатическим полем. Подчеркнём ещё раз, что происходит реальное разделение зарядов: если сейчас распилить шар по диаметру в вертикальной плоскости, то получатся два разноимённо заряженных полушария.

Индуцированные заряды создают своё поле Ei , направление которого внутри шара оказывается противоположным внешнему полю (рис. 1).

Перестроение свободных зарядов шара продолжается до тех пор, пока поле Ei не компенсирует полностью внешнее поле E во всей области внутри шара. При наступлении этого момента (а наступает он почти мгновенно) результирующее поле внутри шара станет равным нулю, дальнейшее движение зарядов прекратится, и они окончательно займут свои фиксированные статические положения на поверхности шара.

А что будет в области снаружи шара? Поле Ei и тут накладывается на внешнее поле E, искажая его тем сильнее, чем ближе к шару расположена точка наблюдения. На больших расстояниях от шара внешнее поле почти не изменится. В результате картина линий напряжённости будет иметь примерно следующий вид (рис. 2).

Рис. 2 Поле внутри проводника равно нулю

До сих пор наши рассуждения относились к случаю незаряженного проводника. Что изменится, если проводнику, помещённому в электростатическое поле, сообщить вдобавок некоторый заряд q?

Легко понять, что результирующее поле внутри проводника всё равно окажется равным нулю. В самом деле, заряд q начнёт перераспределяться по поверхности проводника таким образом, что поле Ei этого заряда внутри проводника будет направлено против внешнего электростатического поля E. Перераспределение будет продолжаться до тех пор, пока оба поля E и Ei не компенсируют друг друга во всей внутренней области проводника.

Таким образом, поле внутри проводника равно нулю вне зависимости от того, заряжен проводник или нет. Любой проводник, помещённый в электростатическое поле, как бы «выталкивает» внешнее поле из своей внутренней области.

1.2 Заряд внутри проводника

Следующий общее свойство проводников состоит в том, что объёмная плотность зарядов внутри проводника везде равна нулю. Сформулируем это более подробно.

Какую бы область внутри проводника мы ни взяли, её суммарный заряд окажется равен нулю. Не скомпенсированные заряды, если они имеются, располагаются целиком на поверхности проводника.

Строгое доказательство этого утверждения опирается на фундаментальную теорему Гаусса, которую в школе не проходят. А неформальное объяснение очень простое: если бы внутри проводника имелись не скомпенсированные заряды, то они создавали бы там электрическое поле. Но электрического поля внутри проводника нет — стало быть, нет и зарядов.

Отсюда следует ещё один замечательный факт: если внутри проводника имеется полость, то поле в этой полости равно нулю. В самом деле, создадим внутри проводника полость, изъяв часть вещества. Поле как было равно нулю до изъятия, так нулевым и останется — ведь заряд вынутого вещества равен нулю! Наши манипуляции не изменили ту статическую конфигурацию зарядов на поверхности проводника, которая создаёт нулевое поле во всех точках внутри проводника.

На явлении исчезновения поля в полости внутри проводника основана так называемая электростатическая защита. Если нужно уберечь от внешних электростатических полей какое- либо устройство, его помещают в металлический ящик (или окружают металлической сеткой), обнуляя напряжённость поля в пространстве вокруг устройства.

1.3 Поле вне проводника

Теперь рассмотрим область пространства, внешнюю по отношению к проводнику. Оказывается, линии напряжённости электрического поля входят в проводник (или выходят из него) перпендикулярно поверхности проводника.

Посмотрите ещё раз на рис. 2. Вы видите, что любая силовая линия, пересекающая шар, направлена точно под прямым углом к его поверхности.

Почему так получается? Давайте снова проведём доказательство от противного. Предположим, что в некоторой точке поверхности проводника силовая линия не перпендикулярна поверхности. Тогда в данной точке имеется составляющая вектора напряжённости, направленная по касательной к поверхности проводника — так называемая касательная составляющая вектора напряжённости. Под действием этой касательной составляющей возникнет электрический ток — а это противоречит тому, что мы находимся в электростатике.

Читать еще:  Как подключать внешние розетки

Иными словами, заряды на поверхности проводника (при помещении проводника во внешнее поле или при сообщении проводнику заряда) перестраиваются до тех пор, пока линии напряжённости, уходящие в окружающее пространство, в каждой точке поверхности проводника не окажутся перпендикулярны этой поверхности (а внутри проводника не исчезнут вовсе).

1.4 Потенциал проводника

Раньше мы говорили о потенциале той или иной точки электростатического поля. Большой интерес представляют множества точек, потенциал которых одинаков. Один пример такого множества мы знаем — это эквипотенциальные поверхности. Другим замечательным примером служит проводник.

Все точки проводника имеют одинаковый потенциал. Иными словами, разность потенциалов между любыми двумя точками проводника равна нулю.

В самом деле, если бы между какой-либо парой точек проводника существовала ненулевая разность потенциалов, возник бы ток от одной точки к другой — ведь в этом случае электрическое поле совершало бы ненулевую работу по перемещению зарядов между данными точками. Но в электростатике никакого тока быть не может. Потенциал какой-либо (и тогда любой) точки проводника называется потенциалом проводника.

Как видим, проводник представляет собой «эквипотенциальный объём». В частности, поверхность проводника является эквипотенциальной поверхностью. Это даёт дополнительное объяснение утверждения предыдущего пункта — мы же знаем, что линии напряжённости электростатического поля перпендикулярны эквипотенциальным поверхностям.

1.5 Напряжённость и потенциал поля проводящей сферы

Рассмотрим металлическую сферу радиуса R, которой сообщён заряд q. Нас интересуют напряжённость и потенциал электростатического поля, создаваемое сферой в каждой точке пространства. Везде далее сферу можно заменить шаром — от этого ровным счётом ничего не изменится. Начнём с напряжённости поля. Внутри сферы, как мы уже знаем, напряжённость поля равна нулю. Вне сферы напряжённость оказывается такой же, как если бы заряд q был точечным и находился в центре сферы. Итак:

На рис. 3 показаны линии напряжённости поля положительно заряженной сферы и график зависимости модуля вектора напряжённости от расстояния до центра сферы.

Рис. 3 Напряжённость поля заряженной сферы

Потенциал поля вне сферы равен потенциалу поля точечного заряда q, расположенного в центре сферы. Внутри сферы потенциал везде одинаков и совпадает с потенциалом точек поверхности сферы:

Вот как выглядит график зависимости потенциала положительно заряженной сферы от расстояния до её центра (рис. 4):

Рис. 4 Потенциал поля заряженной сферы

2 Диэлектрики в электрическом поле

В отличие от проводников, в диэлектриках нет свободных зарядов. Все заряды являются связанными: электроны принадлежат своим атомам, а ионы твёрдых диэлектриков колеблются вблизи узлов кристаллической решётки.

Соответственно, при помещении диэлектрика в электрическое поле не возникает направленного движения зарядов. Поэтому для диэлектриков не проходят наши доказательства свойств проводников — ведь все эти рассуждения опирались на возможность появления тока. И действительно, ни одно из четырёх свойств проводников, сформулированных в предыдущей статье, не распространяется на диэлектрики.

1.Напряжённость электрического поля внутри диэлектрика может быть не равна нулю.

2.Объёмная плотность заряда в диэлектрике может быть отличной от нуля.

3.Линии напряжённости могут быть не перпендикулярны поверхности диэлектрика.

4.Различные точки диэлектрика могут иметь разный потенциал. Стало быть, говорить о «потенциале диэлектрика» не приходится.

2.1 Диэлектрическая проницаемость

Но, тем не менее, одно важнейшее общее свойство у диэлектриков имеется, и вам оно известно (вспомните формулу напряжённости поля точечного заряда в диэлектрике!). Напряжённость поля уменьшается внутри диэлектрика в некоторое число ε раз по сравнению с вакуумом. Величина ε даётся в таблицах и называется диэлектрической проницаемостью диэлектрика.

Давайте разберёмся, каковы причины ослабления поля в диэлектрике. Рассмотрим диэлектрик, помещённый во внешнее однородное (для простоты) поле E. Опыт показывает, что на противоположных поверхностях диэлектрика появляются заряды разных знаков.

Рис. 5 Ослабление поля внутри диэлектрика

Эти индуцированные заряды расположены так, что создаваемое ими поле Ei внутри диэлектрика направлено против внешнего поля E0 (рис. 5, слева). При этом Ei

Почему диэлектрик не проводит электрический ток

Твердые диэлектрики.

Органические соединения, в частности углеводороды, широко используются в качестве жидких диэлектриков. Для углеводородов характерны низкая диэлектрическая проницаемость (от 2 до 4) и умеренно высокое удельное электрическое сопротивление (ок. 1012 ОмЧсм). Поскольку углеводороды не содержат кислорода или азота, они являются химически стабильными и поэтому подходят для использования в сильных электрических полях, в которых процессы ионизации усиливают химическую нестабильность. Примерами жидких диэлектриков могут служить циклические углеводороды, такие, как бензол (C6H6), или ациклические соединения типа гексана . Большинство углеводородов встречаются в виде смесей; химический состав и строение входящих в них компонентов точно не известны. К ним относятся, в порядке возрастания вязкости, петролейный эфир, парафиновое масло, трансформаторные масла, парафин и различные воски.

Некоторые галогенопроизводные продукты, такие, как хлороформ (CHCl3) и четыреххлористый углерод (CCl4), являются диэлектриками. К жидким неорганическим диэлектрикам относятся такие сжиженные газы, как двуокись углерода и хлор.

Важным преимуществом жидких диэлектриков является их способность к восстановлению своих свойств после искрового пробоя и способность проводить тепло, что важно для трансформаторов.

К типичным твердым электроизоляционным материалам относятся фарфор, стекло, кварц, натуральная и синтетическая резина и пластики. Тонкие слои твердых изоляторов могут иметь очень высокие значения напряжения пробоя и удельного электрического сопротивления, что видно из приводимой ниже таблицы.

Повышение приложенной разности потенциалов к рассматриваемому образцу твердого или жидкого диэлектрика увеличивает ток через него. Это увеличение приводит к отрыву электронов и образованию пространственного положительного заряда вблизи катода. Электрический пробой является результатом искажения электрического поля внутри изолятора. Как твердые, так и жидкие диэлектрики подвержены поляризации, т.е. их диэлектрическая постоянная больше единицы. Поляризация приводит к появлению диэлектрических потерь при приложении переменных электрических полей. Некоторые материалы, такие, как кварц, полиэтилен и некоторые газы, имеют очень низкие диэлектрические потери даже в высокочастотных электрических полях.

СВОЙСТВА ТВЕРДЫХ ДИЭЛЕКТРИКОВ
МатериалЭлектрическая прочность, кВ/смДиэлектрическая проницаемостьУдельное электрическое сопротивление, 1014 ОмЧсм
Слюда5,0–7,0
Стекло (разное)200–7003,0–12,010–6 ё104
Метилметакрилат (люсит)3,3–4,5
Фарфор (неглазурованный)5,0–7,0
Эбонит2,0–3,5104

Электромонтажные работы неразрывно связаны со строительством во всех областях народного хозяйства. Поэтому вполне естественно разнообразие технологических методов ведения электромонтажных работ и широкая номенклатура (перечень названий) применяющихся материалов и изделий. Особенно разнообразны электромонтажные изделия для прокладки, закрепления, соединения и присоединения различных проводников (голых шин, кабелей, голых и изолированных проводов), защиты их в необходимых случаях от вредного воздействия окружающей среды и механических повреждений, а также для установки отдельных аппаратов, светильников и т. п. Электромонтажные изделия почти не выпускаются заводами промышленности. В основном они изготовляются электромонтажными организациями в своих мастерских. Однако ведущие электромонтажные организации, одной из которых в области электромонтажа промышленных предприятий является Главэлектромонтаж Министерства строительства, уже многие годы производят на своих специализированных заводах электромонтажные изделия в сравнительно больших количествах и ассортименте. Эти изделия являются массовыми и полностью отвечают требованиям, предъявляемым к заводской продукции. Ниже приводится описание электромонтажных изделий, применяемых только во внутренних электроустановках. Электромонтажные изделия для наружных установок, воздушных линий электропередачи (которые принято называть арматурой линий), крановых троллеев, а также муфты для соединения и оконцевания кабелей не рассматриваются. В тексте, таблицах и на рисунках для изделий указаны типы, принятые в системе Главэлектромонтажа. В брошюре описаны лишь сами изделия. Об их использовании даны только самые общие сведения, гак как технике применения электромонтажных изделий посвящается другая брошюра, готовящаяся к печати в «Библиотеке электромонтера».

Читать еще:  Схема подключения розетки прицепа легкового уаза

Что такое диэлектрик жидкий?

Поляризация данного вида происходит в поле электрического тока. Жидкостные токонепроводящие вещества используются в технике для заливки или пропитки материалов. Есть 3 класса жидких диэлектриков:

Нефтяные масла – являются слабовязкими и в основном неполярными. Их часто используют в высоковольтных аппаратурах: масло трансформаторное, высоковольтные воды. Масло трансформаторное — это неполярный диэлектрик. Кабельное масло нашло применение в пропитке изоляционно-бумажных проводов с напряжением на них до 40 кВ, а также покрытий на основе металла с током больше 120 кВ. Масло трансформаторное по сравнению с конденсаторным имеет более чистую структуру. Данный вид диэлектрика получил широкое распространение в производстве, несмотря на большую себестоимость по сравнению с аналоговыми веществами и материалами.

Что такое диэлектрик синтетический? В настоящее время практически везде он запрещён из-за высокой токсичности, так как производится на основе хлорированного углерода. А жидкий диэлектрик, в основе которого кремний органический, является безопасным и экологически чистым. Данный вид не вызывает металлической ржавчины и имеет свойства малой гигроскопичности. Существует разжиженный диэлектрик, содержащий фторорганическое соединение, которое особо популярно из-за своей негорючести, термических свойств и окислительной стабильности.

И последний вид, это растительные масла. Они являются слабо полярными диэлектриками, к ним относятся льняное, касторовое, тунговое, конопляное. Касторовое масло является сильно нагреваемым и применяется в бумажных конденсаторах. Остальные масла — испаряемые. Выпаривание в них обуславливается не естественным испарением, а химической реакцией под названием полимеризация. Активно применяется в эмалях и красках.

Физические свойства

Условно к проводникам относят материалы с удельным электрическим сопротивлением ρ 108 Ом·м. При этом надо заметить, что удельное сопротивление хороших проводников может составлять всего 10−8 Ом·м, а у лучших диэлектриков превосходить 1016 Ом·м. Удельное сопротивление полупроводников в зависимости от строения и состава материалов, а также от условий их эксплуатации может изменяться в пределах 10−5—108 Ом·м. Хорошими проводниками электрического тока являются металлы. Из 105 химических элементов лишь двадцать пять являются неметаллами, причём двенадцать элементов могут проявлять полупроводниковые свойства. Но кроме элементарных веществ существуют тысячи химических соединений, сплавов или композиций со свойствами проводников, полупроводников или диэлектриков. Чёткую границу между значениями удельного сопротивления различных классов материалов провести достаточно сложно. Например, многие полупроводники при низких температурах ведут себя подобно диэлектрикам. В то же время диэлектрики при сильном нагревании могут проявлять свойства полупроводников. Качественное различие состоит в том, что для металлов проводящее состояние является основным, а для полупроводников и диэлектриков — возбуждённым.

Развитие радиотехники потребовало создания материалов, в которых специфические высокочастотные свойства сочетаются с необходимыми физико-механическими параметрами. Такие материалы называют высокочастотными. Для понимания электрических, магнитных и механических свойств материалов, а также причин старения нужны знания их химического и фазового состава, атомной структуры и структурных дефектов.

Удельное сопротивление деионизированной воды (см. также: бидистиллят) — 10-20 МОм·см.

Почему диэлектрики не проводят электрический ток а проводники проводят

Народна Освіта » Фізика » § 23. Электрический ток. Электрическая проводимость материалов

§ 23. Электрический ток. Электрическая проводимость материалов

Наверное, многие школьники на вопрос «Что бы вы взяли с собой на необитаемый остров?» сразу ответят: «Мобильный телефон и компьютер», — но через некоторое время, конечно, сообразят: «Ой, там же нет электричества. »

Трудно представить, но еще сто лет назад большая часть нашей страны была похожа на такой остров: электричеством могли пользоваться немногие. Сегодня же каждый назовет не менее десяти электрических бытовых устройств, без которых нам уже сложно представить свою жизнь: стиральная машина, лампа, телевизор и т. д. Эти устройства называются электрическими, потому что их работа основана на действии электрического тока. А что такое электрический ток?

Даём определение электрического тока

Проведем опыт. Поставим на стол два электрометра (А и Б) и зарядим один из них, например электрометр А (рис. 23.1, а). Соединим кондукторы электрометров металлическим стержнем, закрепленным на пластмассовой ручке. По отклонению стрелок электрометров видим, что заряд электрометра А уменьшился, а незаряженный электрометр Б получил заряд (рис. 23.1, б). Это значит, что некоторое количество заряженных частиц (в данном случае электронов) перешло по стержню от одного прибора к другому. Физики говорят, что по стержню прошел электрический ток.

Электрический ток — это направленное движение заряженных частиц.

Выясняем условия возникновения и существования электрического тока

Учитывая определение электрического тока, сформулируем первое условие его возникновения и существования в любой среде: в среде должны быть заряженные частицы, которые могут свободно перемещаться по всей среде. Такие частицы называют носителями тока.

Однако этого условия недостаточно для того, чтобы в среде существовал электрический ток. Для создания и поддержания направленного движения свободных заряженных частиц необходимо наличие электрического поля. Именно благодаря действию электрического поля движение заряженных частиц приобретает упорядоченный (направленный) характер, что и означает появление в данной среде электрического тока.

Учимся различать проводники, диэлектрики и полупроводники

Зная условия возникновения и существования электрического тока, нетрудно догадаться, что электрическая проводимость — способность проводить электрический ток — у разных веществ разная. В зависимости от этой способности все вещества и материалы делят на проводники, диэлектрики и полупроводники (о проводниках и диэлектриках уже шла речь в § 21).

Читать еще:  Схема подключения розетки для прицепа легкового автомобиля ваз 2110

Проводники — вещества и материалы, которые хорошо проводят электрический ток.

Проводниками являются металлы (как в твердом, так и в жидком состояниях), графит, водные растворы солей (например, поваренной соли), кислот и щелочей. Высокая электрическая проводимость проводников объясняется наличием в них большого количества свободных заряженных частиц. Так, в металлическом проводнике часть электронов, покинув атомы, свободно «путешествует» по всему объему проводника, и количество таких электронов достигает 10 23 в кубическом сантиметре.

Влажная земля, тело человека или животного хорошо проводят электрический ток, так как содержат вещества, являющиеся проводниками.

Диэлектрики — вещества и материалы, которые плохо проводят электрический ток.

Диэлектриками являются многие твердые вещества (эбонит, фарфор, резина, стекло и др.), жидкости (дистиллированная вода, керосин, спирт, бензин и др.) и газы (кислород, водород, азот, углекислый газ и др.). В диэлектриках почти отсутствуют свободные заряженные частицы.

Проводники и диэлектрики широко используют в промышленности, быту, технике. Так, провода, по которым подводят ток от электростанций к потребителям, изготовляют из металлов — хороших проводников. При этом на опорах провода размещают на изоляторах, — это предотвращает стекание электрического заряда в землю (рис. 23.2). Как вы думаете, почему провода, которые прокладывают в земле, покрывают слоем диэлектрика?

Существует много веществ (например, германий, силиций, арсен), которые называют полупроводниками. Обычно такие вещества плохо проводят ток и их можно отнести к диэлектрикам. Но если повысить температуру или увеличить освещенность, в полупроводниках появляется достаточное количество свободных заряженных частиц и полупроводники становятся проводниками. Полупроводники используются при изготовлении радиоэлектронной аппаратуры, солнечных батарей (рис. 23.3) и т. д.

Электрический ток — это направленное движение заряженных частиц.

Для возникновения и существования электрического тока необходимо наличие свободных заряженных частиц и электрического поля, благодаря действию которого создается и поддерживается направленное движение этих частиц.

В зависимости от электрической проводимости все вещества условно делят на проводники (вещества, которые хорошо проводят электрический ток), диэлектрики (вещества, которые плохо проводят электрический ток) и полупроводники.

1. Что такое электрический ток? 2. Сформулируйте условия возникновения и существования электрического тока. 3. Какие вещества относят к проводникам, диэлектрикам, полупроводникам? Приведите примеры. 4. Почему металлы хорошо проводят электрический ток? 5. Приведите примеры использования проводников и диэлектриков.

1. Запишите названия нескольких предметов, изготовленных из материалов, являющихся: а) проводниками; б) диэлектриками.

2. Каким требованиям должен соответствовать материал для изготовления корпусов розеток и выключателей?

3. Почему трудно, а иногда практически невозможно зарядить электроскоп в помещении с высокой влажностью воздуха?

4. Почему в опыте, описанном в пункте 1 § 23, кондукторы электрометров соединяли металлическим стержнем (см. рис. 23.1)? Для чего стержень был закреплен на пластмассовой ручке? Как изменятся результаты опыта, если вместо металлического стержня воспользоваться пластмассовым?

5. Движутся ли свободные заряженные частицы в проводнике, когда в нем нет тока? Поясните свой ответ.

6. Воспользуйтесь дополнительными источниками информации и выясните, какие вещества являются лучшими диэлектриками и где их применяют.

7. К двум соединенным металлическим пластинам А и Бподнесли наэлектризованную о шерсть эбонитовую палочку (см. рисунок).

1) Какой заряд приобретет пластина А? пластина Б?

2) Останутся ли пластины заряженными, если:

а) разъединить пластины, не убирая палочки?

б) убрать палочку, а потом разъединить пластины?

Волосы проводят электрический ток?

Сухие и здоровые волосы почти не проводят до определенной величины,менее 0,1 А.Ток больше 0,1 А пройдет про любому пути,возможно и через волосы,хотя пути поражения током другие,не через волосы.Но волосы обладают свойствами накапливать электрический заряд,и тогда соприкосновение любого проводника приводит к разряду и стеканию зарядов с волос на проводник,И в этом случае страдает и обладатель волос ,когда почувствует как бы удар током.При больших напряжениях волосы не являются диэлектриком,и проводят ток,поражая и другие участки тела.От тока большого напряжения спасают мощные средства защиты:диэлектрические перчатки,щипцы,накладки.

Другие интересные вопросы и ответы

Какие различают электрические ожоги человеческого тела?

Из своей практики расскажу на следующем примере. Например, если человека пытали током, но проводят скрининг. Электрические ожоги отличаются от термических тем, что на скрининге видны черные точки. Это похоже на то, что электричество проходя через тело человека не обугливает его ткани полностью, а в основном в центровых узлах, например, в узлах нервной системы. А по классификации электрические ожоги бывают 1,2 и 3 степени, как и термические.

Егор Анискевич 3

Ногти проводят электрический ток?

Насколько сильно может ударить статическое электричество, выработанное в бытовых условиях?

Человек каждый день сталкивается со статическим электричеством: прикасаясь к какому-либо предмету, мы иногда получаем небольшой удар током. Это неприятно, а иногда и больно. Наверняка, в эти моменты вы думаете, а может ли заряд быть настолько большим, чтобы последствия удара стали трагическими?

Чтобы убить человека, необходим заряд около 1400 мДж. Те заряды, с которыми мы сталкиваемся в повседневной жизни, несут от 1 до 30 мДж. Они могут возникнуть, например, при причесывании волос, когда атомы одного вещества из-за сильного притяжения перетягивают электроны с атомов другого вещества. Расческа получает отрицательный заряд, а волосы положительный, поэтому и начинают разлетаться в разные стороны (ведь одноименные заряды отталкиваются друг от друга). Когда мы дотрагиваемся до какого-нибудь предмета, мы отдаем ему лишний заряд, накопленный расчесыванием, из-за чего и возникает статическое электричество.

Удар статическим током можно получить даже от любимой кошки, но до сих пор не было зарегистрировано, чтобы домашние питомцы убивали своих хозяев током, да в целом риск смерти от прямого поражения бытовым статическим электричеством сводится к нулю. Даже если сесть в автомобиль и ездить с высокой скоростью, накапливая заряд, он вряд ли превысит хотя бы четверть смертельной дозы. Удар электричеством будет очень неприятным, но угрожать вашей жизни ничего не будет.

Но не стоит думать, что статическое электричество не несет никакой опасности. Возникающие искры могут стать причиной возгорания легковоспламеняющихся веществ. Случаев, когда от пожаров, вызванных статическим электричеством, гибли люди – огромное количество. Но даже если в помещении нет взрывоопасных веществ, рефлекторное сокращение мышц может стать причиной травмы.

Даниил Бойко 12

Почему проводники проводят электрический ток, а диэлектрики почти не проводят??

Насколько я помню, у проводников есть свободные электроны, у диэлектриков – нет.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector