Gc-helper.ru

ГК Хелпер
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Способность материалов проводить электрический ток диэлектрик

Электропроводность

I

электрическая проводимость, проводимость, способность тела пропускать Электрический ток под воздействием электрического поля, а также физическая величина, количественно характеризующая эту способность. Тела, проводящие электрический ток, называются проводниками, в отличие от изоляторов (диэлектриков (См. Диэлектрики)). Проводники всегда содержат свободные (или квазисвободные) носители заряда — электроны, ионы, направленное (упорядоченное) движение которых и есть электрический ток. Э. большинства проводников (металлов (См. Металлы), полупроводников (См. Полупроводники), плазмы (См. Плазма)) обусловлена электронами (в плазме небольшой вклад в Э. вносят также ионы). Ионная Э. свойственна электролитам (См. Электролиты).

Сила электрического тока I зависит от приложенной к проводнику разности потенциалов V, которая определяет напряжённость электрического поля Е внутри проводника. Для изотропного проводника постоянного сечения Е = —V/L, где L — длина проводника. Плотность тока j зависит от значения Е в данной точке и в изотропных проводниках совпадает с ним по направлению. Эта зависимость выражается Ома законом: j = σЕ; постоянный (не зависящий от Е) коэффициент σ и называется Э., или удельной Э. Величина, обратная σ, называется удельным электрическим сопротивлением (См. Электрическое сопротивление): ρ = 1/σ. Для проводников разной природы значения σ (и ρ) существенно различны (см. рис.). В общем случае зависимость j от Е нелинейна, и σ зависит от Е; тогда вводят дифференциальную Э. σ = dj/dE. Э. измеряют в единицах (ом·см) -1 или (в СИ) в (ом·м) -1 .

В анизотропных средах, например в монокристаллах, σ Тензор второго ранга, и Э. для разных направлений в кристалле может быть различной, что приводит к неколлинеарности Е и j.

В зависимости от величины Э. все вещества делятся на проводники с σ > 10 6 (ом·м) —1 , диэлектрики с σ —8 (ом·м) —1 и полупроводники с промежуточными значениями σ. Это деление в значит. мере условно, т. к. Э. меняется в широких пределах при изменении состояния вещества. Э. σ зависит от температуры, структуры вещества (агрегатного состояния, дефектов и пр.) и от внешних воздействий (магнитного поля, облучения, сильного электрического поля и т. п.).

Мерой «свободы» носителей заряда в проводнике служит отношение ср. времени свободного пробега (τ) к характерному времени столкновения t: τ/t >> 1; чем больше это отношение, тем с большей точностью можно считать частицы свободными. Методы молекулярно-кинетической теории газов позволяют выразить σ через концентрацию (n) свободных носителей заряда, их заряд (е) и массу (m) и время свободного пробега:

где μ — подвижность (См. Подвижность ионов и электронов) частицы, равная E/vcp = eτ/m, vcp — ср. скорость направленного движения. Если ток обусловлен заряженными частицами разного сорта «i», то . Подвижность электронов (вследствие их малой массы) настолько больше ионной, что ионная Э. существенна только в случае, когда свободные электроны практически отсутствуют. Перенос массы под воздействием тока, напротив, связан с движением ионов.

Характер зависимости Э. от температуры Т различен у разных веществ. У металлов зависимость σ(Т) определяется в основном уменьшением времени свободного пробега электронов с ростом Т: увеличение температуры приводит к возрастанию тепловых колебаний кристаллической решётки, на которых рассеиваются электроны, и σ уменьшается (на квантовом языке говорят о столкновении электронов с Фононами). При достаточно высоких температурах, превышающих Дебая температуру (См. Дебая температура) θD, Э. металлов обратно пропорциональна температуре: σ

1/Т; при Т —5 , однако ограничена остаточным сопротивлением (см. Металлы). В полупроводниках σ резко возрастает при повышении температуры за счёт увеличения числа электронов проводимости и положительных носителей заряда — дырок (См. Дырка) (см. Полупроводники). Диэлектрики имеют заметную Э. лишь при очень высоких электрических напряжениях; при некотором (большом) значении Е происходит Пробой диэлектриков.

Некоторые металлы, сплавы и полупроводники при понижении Т до нескольких градусов К переходят в сверхпроводящее состояние с σ = ∞ (см. Сверхпроводимость). При плавлении металлов их Э. в жидком состоянии остаётся того же порядка, что и в твёрдом.

Прохождение тока через частично или полностью ионизованные газы (плазму) обладает своей спецификой (см. Электрический разряд в газах, Плазма). Например, в полностью ионизованной плазме Э. не зависит от плотности и возрастает с ростом температуры пропорционально Т 3/2 , достигая Э. хороших металлов.

Отклонение от закона Ома в постояном поле Е наступает, если с ростом Е энергия, приобретаемая частицей между столкновениями, eEl, где l — средняя длина свободного пробега, становится порядка или больше kT (k— Больцмана постоянная). В металлах условию eEl >> kT удовлетворить трудно, а в полупроводниках, электролитах и особенно в плазме явления в сильных электрических полях весьма существенны.

В переменном электромагнитном поле σ зависит от частоты (ω) и от длины волны (λ) поля (временна́я и пространственная дисперсия, проявляющиеся при ω ≥ τ -1 , λ ≤ l). Характерным свойством хороших проводников является Скин-эффект (даже при ω —1 ток сконцентрирован вблизи поверхности проводника).

Измерение Э.— один из важных методов исследования материалов, в частности для металлов и полупроводников — их чистоты. Кроме того, измерение Э. позволяет выяснить динамику носителей заряда в макроскопическом теле, характер их взаимодействия (столкновений) друг с другом и с другими объектами в теле.

Э. металлов и полупроводников существенно зависит от величины магнитного поля, особенно при низких температурах (см. Гальваномагнитные явления).

Зависимость электропроводности σ некоторых веществ от абсолютной температуры Т. Металлы: 1 — медь, 2 — свинец (ниже 7,3 К становится сверхпроводящим); полупроводники: 3 — графит, 4 — чистый германий, 5 — чистый кремний; ионные проводники: 6 — хлористый натрий, 7 — стекло.

II

биологических систем, обусловлена наличием в них ионов и подвижных полярных молекул. Биологическая ткань состоит из клеток и межклеточного пространства, заполненного веществом — электролитом с удельным сопротивлением около 100 ом·см. Внутреннее содержимое клетки отделено от межклеточного пространства мембраной, эквивалентная электрическая схема которой представляет собой параллельное соединение сопротивления и ёмкости. Поэтому Э. биологических тканей зависит от частоты проходящего тока и формы его колебаний. Удельное сопротивление и ёмкость мембраны клетки составляют величины порядка 1 ком·см 2 и 1 мкф/см 2 (соответственно). Некоторые биологические ткани способны отвечать Возбуждением на проходящий ток; в этом случае их Э. нелинейно зависит от амплитуды тока. Если возбуждения не возникает, то токи распространяются в ткани в соответствии с импедансом её компонентов. Клеточные мембраны представляют относительно большое сопротивление для токов низкой частоты (≤ 1 кгц), поэтому их основная часть проходит по межклеточным щелям. Амплитуда низкочастотных токов пропорциональна объёму межклеточного пространства (например, просвету кровеносных сосудов) и концентрации электролитов в нём. Измерение Э. биологических тканей на таких низких частотах используют в биологии и медицине для определения кровенаполнения различных органов, выявления отёка органов, в которых набухшие клетки уменьшают межклеточное пространство. Э. биологических тканей, измеренная на частотах, больших 100 кгц, пропорциональна общему количеству электролитов, содержащихся в ткани между электродами, т. к. в этом случае клеточные мембраны уже не препятствуют распространению электрического тока. Измерение Э. на таких высоких частотах используют в биологии и медицине для регистрации малых изменений объёма органов, связанных с притоком или оттоком крови от них. Знание Э. биологических систем необходимо не только для оценки их структуры, но и для адекватного конструирования приборов, во входные или выходные цепи которых включены биологические ткани.

Читать еще:  Заземление розетки для водонагревателя

Лит.: Коль К. С., Ионная электропроводность нервов, пер. с англ., в сборнике: Процессы регулирования в биологии, М., 1960; Шван Г., Спектроскопия биологических веществ в поле переменного тока, в сборнике: Электроника и кибернетика в биологии и медицине, пер. с англ., М., 1963; Аккерман Ю., Биофизика, пер. с англ., М., 1964, с. 222—27; Кол К. С., Нервный импульс (теория и эксперимент), в сборнике: Теоретическая и математическая биология, М., 1968.

Электрические свойства и характеристики материалов (общие)

Электрические свойства и характеристики материалов (общие)

Электрические и магнитные поля не существуют обособленно (независимо), т.К. Порождают друг друга. Электротехнические материалы

Электротехнические материалы – это материалы, обладающие определёнными свойствами по отношению к электромагнитному полю и применяемые в технике с учётом этих свойств (различные материалы подвергаются воздействиям как отдельно электрических и магнитных полей, так и их совокупности).

Применение: электрические машины, аппараты, приборы и другие элементы электрооборудования и электроустановок.

Классификация электротехнических материалов.

1. В электрическом поле.

1. П роводниковые материалы (проводники) – это материалы, в которых под действием электрического поля возникает электрический ток (металлы и их сплавы, графит).

В проводниках есть свободные носители заряда и под действием электрического поля они приобретают направленное движение. Такое упорядоченное движение электрических зарядов и есть электрический ток.

Применение: токоведущие части электрических машин, аппаратов и сетей.

2. Полупроводниковые материалы (полупроводники) – это материалы, в которых под действием эклектического поля возникает электрический ток, но их проводимость зависит от внешних условий (температуры, примесей, света, электрического и магнитного полей, давления, ядерного излучения и т.д.) (германий Ge, кремний Si, карбид кремния SiC).

Применение: электронная техника (диоды, транзисторы, тиристоры).

3. Д иэлектрические материалы (диэлектрики) – это материалы, которые под действием электрического поля не создают электрический ток в обычных условиях, основным электрическим свойством которых является способность поляризоваться в электрическом поле (резина, пластмассы, стекло).

В диэлектриках электрические заряды прочно связаны с атомами, молекулами или ионами и в электрическом поле могут лишь смещаться, при этом происходит разделение центров положительного и отрицательного зарядов, т.е. поляризация.

Применение: изоляция токоведущих частей друг от друга, окружающих предметов и персонала.

2. В магнитном поле.

1. Слабомагнитные материалы – это материалы, у которых магнитная восприимчивость очень мала (медь Cu, алюминий Al, свинец Pb, органические соединения).

Применение: не нашли широкого применения в технике.

2. Сильномагнитные материалы (магнетики) – это материалы, которые под действием магнитного поля намагничиваются и тем самым усиливают его (железо Fe, никель Ni, кобальт Co и их сплавы).

Применение: сердечники и магнитопроводы электрических машин и аппаратов, постоянные магниты.

МЕХАНИЧЕСКИЕ СВОЙСТВА И ХАРАКТЕРИСТИКИ МАТЕРИАЛОВ

Механические характеристики позволяют оценить способность материалов выдерживать внешние статические и динамические нагрузки, необходимы для выбора технологической обработки материалов (резание, штамповка, литьё), расчёта на прочность, контроля и диагностирования состояния деталей конструкций в процессе эксплуатации.

Испытание на растяжение проводят на цилиндрических образцах и брусках с прямоугольным сечением. Образец закрепляют концами в захватах испытательной машины. Нижний захват неподвижен, к другому прикладывают разрушающее растягивающее усилие, которое плавно увеличивают с определённой скоростью до момента разрыва образца.

1. Пластичность – это свойство материала необратимо изменять свою форму и размеры под воздействием внешних механических нагрузок.

где ∆lост – приращение длины образца после разрыва, мм;

l0 – первоначальная длина образца, мм.

Чем больше значение относительного удлинения, тем пластичнее материал.

2. Прочность – это свойство материала сопротивляться деформации или разрушению под воздействием внешних механических нагрузок.

Разрушающее напряжение при растяжении (предел прочности при растяжении)

где Рр – разрушающая нагрузка при разрыве образца, Н;

S0 – площадь поперечного сечения образца до испытания, мм2.

Чем больше значение предела прочности, тем прочнее материал.

3. Твёрдость – это свойство материала сопротивляться проникновению в его поверхность более твёрдого тела (индентора).

Индентор – твёрдосплавный наконечник в виде шара, пирамиды или конуса, твёрдость которого существенно превосходит твёрдость испытуемого материала.

По методу Бринелля в поверхность материала вдавливается стальной шарик.

где Р – нагрузка на индентор, Н;

Sотп – площадь поверхности отпечатка, мм2.

По методу Виккерса в поверхность материала вдавливается алмазная четырёхгранная пирамида под действием нагрузки.

Чем больше значение твёрдости, тем более твёрдый материал.

4. Ударную вязкость – это свойство материала сопротивляться ударной нагрузке.

Испытание на ударный изгиб проводят на брусках с прямоугольным сечением (для металлов с надрезом U-образным и V-образны). Образец помещают в маятниковом копре. Удар, наносимый по центру образца маятником, плавно увеличивают. Указатель на шкале копра фиксирует значение работы, затрачиваемой маятником на разрушением образца.

где ∆А – работа, затраченная маятником на разрушение образца, МДж.

Чем больше значение ударной вязкости, тем менее хрупок материал.

Электрические свойства и характеристики материалов (общие)

Электрические характеристики позволяют оценить свойства материалов при воздействии на него электрического поля. Основное свойство электротехнических материалов по отношению к электрическому полю – электропроводность.

Электропроводность – это свойство материала проводить электрический ток под действием постоянного (не изменяющегося во времени) электрического напряжения.

1. Удельное электрическое сопротивление – это сопротивление материала длинной 1 м и поперечным сечением 1 м2.

где γ – удельная проводимость материала, это проводимость материала длинной 1м и поперечным сечением 1м2, 1/Ом∙м;

q – величина заряда носителя (заряд электрона 1,6·10-19), Кл;

n – количество носителей заряда в единице объёма;

µ – подвижность носителя заряда.

Чем больше значение ρ, тем меньше электропроводность материала.

Сопротивление проводника – это конструктивная характеристика проводника, т.к. зависит от размеров и проводниковых свойств материала.

где ρ – удельное сопротивление материала, Ом∙м;

l – длина проводника, м;

S – площадь поперечного сечения проводника, м2.

2. Температурный коэффициент удельного сопротивления – показывает, на сколько изменится сопротивление материала в 1 Ом при нагревании его на 1 0С.

П ри линейном изменении удельного сопротивления в узком интервале температур

где ρ – удельное сопротивление материала при температуре ;

ρ0 – удельное сопротивление материала при начальной

температуре t0, обычно принимается 200С.

Если заменить удельное сопротивление на сопротивление

Чем больше значение α, тем в большей степени изменяется сопротивление проводника при изменении температуры.

Проводники α>0 с увеличением температуры удельное сопротивление материала увеличивается.

Полупроводники и диэлектрики α

Физические и химические показатели диэлектриков

В диэлектриках содержится определенное число высвобожденных кислот. Количество едкого калия в миллиграммах, необходимое для избавления от примесей в 1 г вещества, носит название кислотного числа. Кислоты разрушают органические материалы, оказывают отрицательное действие на изоляционные свойства.

Характеристика электротехнических материалов дополняется коэффициентом вязкости или трения, показывающим степень текучести вещества. Вязкость делят на условную и кинематическую.

Степень водопоглощения определяется в зависимости от массы воды, впитанной элементом испытательного размера после суток нахождения в воде при заданной температуре. Эта характеристика указывает на пористость материала, повышение показателя ухудшает изоляционные свойства.

Читать еще:  Розетка кленовый лист построение

Компаунды для электрической изоляции

Эти материалы представляются жидким раствором в момент использования с последующим застыванием и отвердеванием. Вещества характерны тем, что в составе не содержат растворителей. Компаунды также относятся к группе «электротехнические материалы». Виды их бывают заливочные и пропиточные. Первый вид применяют для заполнения полостей в муфтах кабелей, а вторая группа используется для пропитки обмоток двигателя.

Компаунды производят термопластичными, они размягчаются после повышения температур, и термореактивными, стойко сохраняющими форму отвердевания.

Композиционные материалы

Материалы, которые подразделяются не по функционированию, а по составу, называются композиционными материалами, это тоже электротехнические материалы. Их свойства и применение обусловлены сочетанием применяемых при изготовлении материалов. Примером служат листовые стекловолокнистые компоненты, стеклопластик, смеси электропроводного и тугоплавкого металлов. Применение равноценных смесей позволяет выявить сильные стороны материала и применять их по назначению. Иногда сочетание композитных составляющих приводит к созданию абсолютно нового элемента с другими свойствами.

Волокнистые непропитанные электроизоляционные материалы

Для производства таких материалов используют волокна органики и искусственно созданные составляющие. Природные растительные волокна натурального шелка, льна, дерева переделывают в материалы органического происхождения (фибра, ткань, картон). Влажность таких изоляторов колеблется в пределах 6-10%.

Органические материалы из синтетики (капрон) содержат влаги только от 3 до 5%, такое же насыщение влагой и у неорганических волокон (стекловолокно). Неорганические материалы отличаются неспособностью к возгоранию при значительном нагревании. Если материалы пропитать эмалями или лаками, то горючесть повышается. Поставка электротехнических материалов производится на предприятие по изготовлению электрических машин и приборов.

Пленочные материалы

Большую область применения в электротехнике завоевали пленки и ленты, как электротехнические материалы. Свойства их отличаются от других диэлектриков гибкостью, достаточной механической прочностью и отличными изоляционными характеристиками. Толщина изделий варьируется в зависимости от материала:

  • пленки делают толщиной 6-255 мкм, ленты выпускают 0,2-3,1 мм;
  • полистирольные изделия в виде лент и пленок производят толщиной 20-110 мкм;
  • полиэтиленовые ленты делают толщиной 35-200 мкм, шириной от 250 до 1500 мм;
  • фторопластовые пленки изготавливают толщиной от 5 до 40 мкм, ширину предусматривают 10-210 мм.

Классификация электротехнических материалов из пленки позволяет выделить два вида: ориентированные и неориентированные пленки. Первый материал применяется наиболее часто.

Определение электропроводности предметов

В исследовательской работе выявляли определение электропроводности предметов. Проведен эксперимент.

Скачать:

ВложениеРазмер
opredelenie_elektroprovodnosti_predmetov_issledovatelskaya_rabota_ivanov.docx27.5 КБ

Предварительный просмотр:

Муниципальное общеобразовательное бюджетное учреждение

Средняя общеобразовательная школа №35

Научно-исследовательская работа на тему:

«Определение электропроводности предметов»

Ученик 1 «Г» класса

Введение

В современном мире существует много электроприборов, электрический ток используется повсюду. Почти с самого рождения детей учат правилам безопасности, чтобы уберечь себя от удара электрическим током.

Поэтому важно знать, что существуют материалы, которые проводят электрический ток, и те, которые его не проводят.

Данная исследовательская работа проведена для того, чтобы определить какие материалы являются проводниками, а какие — диэлектриками. Для этого собрано простое устройство, которое работает от батарейки. Поэтому его использование безопасно.

Целью данной работы является исследование электропроводности различных материалов.

Гипотеза : при небольшой помощи взрослых ребенок может создать безопасное устройство для определения электропроводности предметов.

Были поставлены следующие задачи :

  1. Выяснить, что такое электропроводность.
  2. Сделать устройство для определения электропроводности материалов.
  3. Среди предметов, используемых каждый день, найти проводники и изоляторы.

Для достижения цели работы и выполнения поставленных задач были применены следующие методы: изучение литературы, эксперимент, наблюдение, сравнение, анализ полученных данных.

Историческая справка о проблеме

Электропроводность – это способность материалов проводить электрический ток.

Все материалы, существующие в природе, различаются своими электрическими свойствами. Таким образом, в отдельные группы выделяются диэлектрические материалы и проводники электрического тока.

Проводники – это материалы, которые проводят электрический ток, а диэлектрики – это материалы, которые его не проводят. Предметы, изготовленные из диэлектриков, называют изоляторами.

В проводнике содержится достаточное количество свободных электрических зарядов, способных перемещаться под действием электрического поля.

Проводящими электрический ток веществами являются металлы, недистиллированная вода, раствор солей, влажный грунт, человеческое тело.

Металл – это самый лучший проводник электрического тока.

Диэлектрик не содержит внутри свободные электрические заряды. В изоляторах электрический ток невозможен.

Самым лучшим диэлектриком является газ. Другие непроводящие электрический ток материалы – это стеклянные, фарфоровые, керамические изделия, а также резина, картон, сухое дерево, смолы и пластмассы.

В 17 веке после того как Уильям Гильберт установил, что многие тела обладают способностью электризоваться при их натирании, в науке считалось, что все тела по отношению к электризации делятся на два вида: на способные электризоваться при трении, и на тела, не электризующиеся при трении.

Только в первой половине 18 века было установлено, что некоторые тела обладают, кроме того, способностью распространять электричество. Первые опыты в этом направлении были проведены английским физиком Греем. В 1729 г. Грей открыл явление электрической проводимости. Он установил, что электричество способно передаваться от одних тел к другим по металлической проволоке. По шелковой же нити электричество не распространялось. Именно Грей разделил вещества на проводники и непроводники электричества. Только в 1739г. было окончательно установлено, что все тела следует делить на проводники и диэлектрики.

Впервые провел исследование проводимости диэлектриков Кулон. Он показал, что любой изолятор обладает малой, определенной для каждого вещества электропроводимостью. Одновременно с Кулоном исследованием электропроводимости веществ занимался Кавендиш. В его записках, относящихся к 1775 г., найдены уже сравнительные численные результаты. Так, например, Кавендиш установил, что железная проволока проводит ток лучше, чем дистиллированная вода. Интересно, что роль измерительного прибора при этом играло физиологическое ощущение тока.

Английский физико-химик Гемфри Дэви в 1821 г. установил, что проводимость металлических проводников уменьшается при их нагревании. Таким образом была впервые установлена зависимость проводимости от температуры.

Так же исследования электропроводимости провел Фарадей в 1833 г. Он показал, что все вещества в большей или меньшей степени проводят ток, поэтому абсолютной изоляции не существует. В результате многочисленных опытов Фарадей установил, что проводимость диэлектриков растет при нагревании, а при переходе через точку плавления все твердые диэлектрики становятся проводниками.

Английский ученый Гаррис в 1834 г. показал, что проводимость воздуха не изменяется при нагревании.

Изучение проводимости металлов стало важной технической проблемой в связи с развитием мировой системы телеграфной связи. Естественно возник вопрос об увеличении проводимости металлов. Физическая теория не давала ответа на этот вопрос, ибо был неизвестен механизм электропроводимости. В конце XIX в., после открытия электрона, начала развиваться электронная теория проводимости. Начало теории дал в 1900 г. немецкий физик Пауль Друде.

Эксперименты

Для определения электропроводности материалов я решил сделать робота из картона, проволоки и светодиода. Внутри робота будет спрятана батарейка, подключенная к светодиоду и антенкам из проволоки.

Для сборки корпуса робота я распечатал на картоне шаблоны из интернета и вырезал их (см. Приложение 1).

Затем приступил к сборке. В голове робота я сделал несколько отверстий и вставил туда светодиод и антенны из проволоки. Закрепил их при помощи клеевого пистолета (см. Приложение 2).

Для соединения батарейки, антенн и светодиода проводами я хотел использовать изоленту, но у меня не получилось надежное соединение, поэтому я попросил папу помочь мне с паяльником.

В результате мы соединили светодиод с батарейкой и с одной из антенн, вторая антенна была присоединена к батарейке (см. Приложение 3). Получилась электрическая цепь.

Затем я закончил сборку робота, спрятав внутри него батарейку и провода (см. Приложение 4).

Далее я приступил к исследованию электропроводности материалов. Что бы определить является предмет проводником или изолятором, я использовал антенны робота.

Если антеннами касаться предмета, проводящего электрический ток, электрическая цепь замыкается и светодиод загорается. Ток течет через светодиод, затем по проводу к проводнику, а от проводника – по другому проводу к батарейке.

Если антенны дотрагиваются до изолятора, то замкнутой цепи не получается, ток не течет, и светодиод не загорается.

Для исследования я использовал разные предметы, применяемые в обычной жизни: металлическую линейку, ножницы, карандаш, ручку, пластмассовую линейку и иглу для шитья.

Когда антенн касались ножницы, металлическая линейка и игла, светодиод загорался, электрическая цепь замыкалась. Значит эти предметы являются проводниками электрического тока. Когда для эксперимента я использовал карандаш, ручку и пластмассовую линейку, светодиод не загорался. Значит эти предметы являются изоляторами (см. Приложение 5).

Заключение

В ходе исследования была достигнута цель работы, подтверждена гипотеза и выполнены поставленный задачи.

При небольшой помощи взрослого, я собрал робота, позволяющего безопасно определить электропроводность материалов.

На доступных предметах я провел эксперимент и выяснил какие предметы, используемые в обычной жизни, являются проводниками электрического тока, а какие – изоляторами.

Классификация веществ по способности проводить электрический ток

Ответ или решение 2

Электрическим током называется направленное движение заряженных частиц.

Для появления электрического тока необходимо 2 условия:

  • наличие заряженных частиц;
  • заряженные частицы должны двигаться в одном направлении.

В зависимости от наличия свободных заряженных частиц все вещества разделяются на 3 вида:

  1. проводники;
  2. полупроводники;
  3. диэлектрики.

Проводники

Это вещества, в которых большая концентрация свободных носителей заряда. К ним относятся металлы, электролиты и ионизированный газ.

В металлах свободными носителями заряда являются свободные электроны, в электролитах и ионизированном газе ионы. Положительно заряженные ионы называются катионами, отрицательно заряженные ионы анионы.

Под действием электрического поля электроны в металлах, ионы в электролитах и газе начинают упорядоченно двигаться, образовывая электрический ток. К электролитам относят водные растворы солей и кислот.

У металлов проводимость электронная, в электролитах и ионизированном газе ионная.

Полупроводники

Вещества, концентрация свободных носителей электрического заряда зависит от внешних условий (температуры, освещенности и т.д.).

При повышении температуры (освещенности) у вещества, вследствие теплового движения, некоторые электроны становятся свободными, а их место становится вакантным. Место, которое покинул электрон, называется «дырка», она имеет положительный электрический заряд.

При наличии электрического поля «дырки» и электроны двигаются в противоположенных направлениях, образовывают направленное движения электрических зарядов, то есть электрический ток. У полупроводников электронно-дырочная проводимость электрического тока, которая зависит от внешних факторов.

К полупроводникам относят: германий, кремний, селен.

Диэлектрики

Вещества, в которых свободные носители заряда отсутствуют. Диэлектрики не проводят электрический ток, ни при каких условиях, их еще называют изоляторами. К ним относятся слюда, керамика, стекло, резина.

Вещества по способности проводить электрический ток делятся на 3 группы:

Проводники — вещества, которые хорошо проводят электрический ток.

К ним относятся металлы, растворы солей, кислот, щелочей в воде. Для них характерно наличие свободных заряженных частичек (электронов, ионов), которые под действием электрического поля двигаются.

Полупроводники — вещества, в которых электрическая проводимость зависит от внешних условий. Количество свободных заряженных частиц в них зависит от определенных условий: температуры, освещенности, наличия примесей.

К ним относятся кремний, индий, германий.

Диэлектрики — вещества, которые ни при каких условиях не проводят электрический ток. В них очень маленькая концентрация свободных носителей заряда.

Чем отличаются диэлектрики от проводников?

Все вещества состоят из молекул, молекулы из атомов, атомы из положительно заряженных ядер вокруг которых располагаются отрицательные электроны. При определенных условиях электроны способны покидать свое ядро и передвигаться к соседним. Сам атом при этом становится положительно заряженным, а соседний получает отрицательный заряд. Передвижение отрицательных и положительных зарядов под действием электрического поля получило название электрического тока.

В зависимости от свойства материалов проводить электрический ток их делят на:

  1. Проводники.
  2. Диэлектрики.
  3. Полупроводники.

Свойства проводников

Проводники отличаются хорошей электропроводностью. Это связано с наличием у них большого количества свободных электронов не принадлежащих конкретно ни одному из атомов, которые под действием электрического поля могут свободно перемещаться.

Большинство проводников имеют малое удельное сопротивление и проводят электрический ток с очень небольшими потерями. В связи с тем, что идеально чистых по химическому составу элементов в природе не существует, любой материал в своем составе содержит примеси. Примеси в проводниках занимают места в кристаллической решетке и, как правило, препятствуют прохождению свободных электронов под действием приложенного напряжения.

Примеси ухудшают свойства проводника. Чем больше примесей, тем сильнее они влияю на параметры проводимости.

Хорошими проводниками с малым удельным сопротивлением являются такие материалы:

  • Золото.
  • Серебро.
  • Медь.
  • Алюминий.
  • Железо.

Золото и серебро – хорошие проводники, но из-за высокой стоимости применяются там, где необходимо получить хорошие качественные проводники с малым объемом. Это в основном электронные схемы, микросхемы, проводники высокочастотных устройств у которых сам проводник изготовлен из дешевого материала (медь), который сверху покрыт тонким слоем серебра или золота. Это дает возможности при минимальном расходе драгоценного металла хорошие частотные характеристики проводника.

Медь и алюминий — более дешевые металлы. При незначительном снижении характеристик этих материалов, их цена на порядки ниже, что дает возможность для их массового применения. Применяют в электронике, в электротехнике. В электронике – это дорожки печатных плат, ножки радиоэлементов, радиаторы и др. В электротехнике очень широко применяется в обмотках двигателей, для прокладки электрических сетей высокого и низкого напряжения, разводку электричества в квартирах, домах, в транспорте.

Свойства диэлектриков

Диэлектрики в своей кристаллической решетке содержат очень мало свободных электронов, способных переносить заряде под действием электрического поля. В связи с этим при создании разности потенциалов на диэлектрике, ток, проходящий через него такой незначительный, что считается равным нулю — диэлектрик не проводит электрический ток. Наряду с этим, примеси, содержащиеся в любом диэлектрике, как правило, ухудшают его диэлектрические свойства. Ток, проходящий через диэлектрик под действием приложенного напряжения в основном определяется количеством примесей.

Наибольшее распространение диэлектрики получили в электротехнике там, где необходимо защитить обслуживающий персонал от вредного воздействия электрического тока. Это изолирующие ручки разных приборов, устройств измерительной техники. В электронике – прокладки конденсаторов, изоляция проводов, диэлектрические прокладки необходимые для теплоотвода активных элементов, корпуса приборов.

Полупроводники – материалы, которые проводят электричество при определенных условиях, в другом случае ведут себя как диэлектрики.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector