Gc-helper.ru

ГК Хелпер
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Бесконтактный выключатель для светодиодных светильников

Arduino DIY Блог, для самодельщиков

Всем привет!
Сегодня я Вам расскажу про бесконтактный выключатель с звуковым эффектом, который был сделан мной 9 лет назад, а если быть точным то в январе 2012 года. Ссылку на ролик 2012 г. я выложил в комментарии под этим видео.
С тех пор выключатель трудится у меня круглыми сутками на протяжении 9 лет. Что самое интересное он За все это время, он не выходил из строя и даже ни разу не подвис, а также у него никогда не было ложных срабатываний. Вообщем он хорошо себя зарекомендовал и я с уверенностью могу его Вам рекомендовать для самостоятельной сборки.
Если Вам интересны все подробности, то прошу посмотреть этот ролик до конца и оценить его подпиской и лайком.

У меня в коридоре смонтировано 7 светильников.

И для достижения красивого визуального эффекта, я использовал последовательное включение ламп, для этого мне нужно было протянуть к плате контроллера, отдельный провод от каждой точки освещения .

Саму плату я спрятал в пространстве между гипсокартоном и потолком, благо места там больше чем достаточно.

ИК приемник и светодиод я разместил в подрозетнике. Во избежании ложных срабатываний их нужно изолировать между собой, для этого я использовал термоусадочный кембрик. Что бы подключить этот оптический датчик к плате контроллера, можно использовать заложенные в стену провода.

Для того что бы дизайн выключателя не отличался от других установленных декоративных накладок в интерьере, я использовал из этой же серии телевизионную розетку, из которой выкинул все внутренности, а в отверстие вклеил круглое окошко вырезанное из фиолетового акрила.

Все компоненты были размещены мной на одной плате, на которой установлены винтовые коннекторы для подключения проводов от светильников.

Запитал я эту плату обычным зарядным устройством от телефона. Которое по сей день работает, видать в то время зарядки изготавливали по более надежным схемам чем сейчас.

Основой всего устройства является контроллер arduino Nano V.3, но можно так же использовать любые другие платы, с микроконтроллером Atmega328

ИК светодиод с фототранзистором можно взять от датчика препятствий, но не обязательно их выпаивать, достаточно перерезать лишние дорожки и припаять к ним 3 провода. Если у Вас есть откуда нибудь эти ранее выпаянные детали, то перед использованием, лучше сначала проверить их на работоспособность. Инфракрасный светодиод подключите к напряжению 5 В, через токоограничивающий резистор 120 Ом и посмотрите на него через камеру телефона, он должен светиться фиолетовым светом. Для проверки фототранзистора понадобится любой тестер с функцией прозвонки проводников. Переводим тестер в режим прозвонки, а выводы фототранзистора подключаем к щупам тестера. После чего нужно к нему в плотную поднести любой пульт от бытовой техники и нажать любую кнопку. В ответ раздастся прерывистый пищащий звук.

9 лет назад я не нашел подходящих твердотельных реле и мне пришлось их собирать самому из рассыпухи. Но на данный момент проще купить 8 канальный модуль твердотельных реле как на изображении, чем заниматься тратой времени на поиск этих компонентов.

Работает выключатель следующим образом
Arduino с выхода D5 постоянно выдает ШИМ сигнал с частотой примерно 977 Гц. К этому выходу через токоограничивающий резистор 82 Ом подключен светодиод, излучающий сигнал в инфракрасном диапазоне. Фототранзистор подключенный к входу D2 детектирует отраженный от руки ИК сигнал и проверяет его на достоверность и если сигнал из 20-ти или больше идущих подряд импульсов соответствует частоте 977 Гц, то тогда контроллер включает по очереди все 7 светильников и начинает воспроизводить звуковой эффект через ШИМ выход D11. Все тоже самое происходит и при выключении.

Воспроизведение звуков
Для воспроизведения звуковых эффектов используется формат WAV без сжатия, с частотой 16000 Гц и глубиной 8 бит , но при воспроизведении данного формата с использованием ШИМ, в аудио тракте наблюдается неприятный свист и шипение. По этому для для улучшения качества воспроизведения, я в коде использовал линейную интерполяцию. При которой, выборка семплов происходит на частоте 62.5 кГц и между оригинальными выборками вставляются еще 3 дополнительных семпла рассчитанных методом линейной интерполяции. Таким образом на выходе снижается шум квантования, пропадает свист, улучшается качество звука и для воспроизведения не обязательно использовать дополнительные RC фильтры.

Вместо динамика я использовал старую, маленькую компьютерную колонку без встроенного усилителя.

Для конвертирования Wave файлов в Си код, можно воспользоваться онлайн конвертером

Схема
На схеме серыми прямоугольниками отметил твердотельные реле, а тем кто хочет заморочиться, то может собрать схему полностью, так же как сделал я в далеком прошлом.

Код для Arduino развернуть

В этот раз я решил добавить все используемые библиотеки в папку со скетчем, а в самом скетче прописал их локальное использование. Теперь надеюсь у новичков будет меньше ко мне вопросов, по поводу ошибок при компилировании.
В коде вынесены несколько констант, которые можно изменить перед прошивкой.
Константа power_ir — отвечает за дистанцию срабатывания выключателя, может принимать значения от минимума 20 и до максимума 200. Требуемое Вам значение можно определить экспериментальным путем.
lamp_num — определяет количество используемых Вами ламп. Минимальное число лампочек не может быть меньше 1, а максимальное не более 7. Если подправить код то можно увеличить до 15.
lamp_delay — это задержка между последовательными включениями ламп, которая выражена в миллисекундах и может начинаться от 0 и до 4 294 967 295 мс. Хотя я не думаю, что такие огромные задержки кому то понадобятся )

Заключение.
В заключении хотелось бы добавить, что я очень удивлен, что микроконтроллер без WDT, за 9 лет ни разу не подвис. По этой же причине я не стал править код и добавлять в него WDT, так как Arduino со старыми bootloader не умеют работать с ним и их еще достаточно большое количество на руках у DIY сообщества

Спасибо, что дочитали до конца!
Если Вам понравилась моя статья — то поддержите ее лайком и подпиской
Если у Вас есть вопросы, то можете их задать в комментариях.

Что такое инфракрасный выключатель света, как он устроен, и настолько ли безопасен?

Что такое инфракрасный выключатель. Как работает, какие виды бывают. Как выбрать устройство для дистанционного управления светильниками.

  1. Инфракрасный выключатель: принцип действия, виды и рекомендации по выбору
  2. Преимущество применения для дома
  3. Как устроены выключатели, реагирующие на взмах руки
  4. Устройство
  5. Принцип работы
  6. Какие бывают
  7. Автоматические с датчиком движения
  8. Электронные и механические
  9. Виды по способу крепления и монтажа
  10. Безопасно ли применение ИК-лучей?
  11. Дополнительные опции
  12. Выбор по цене и производителю
  13. Общие рекомендации
  14. Полезное видео

Инфракрасный выключатель: принцип действия, виды и рекомендации по выбору

Инфракрасный выключатель – это устройство, осуществляющее управление светом при помощи движения в радиусе действия. Используются для создания комфортных и удобных условий в доме.

Преимущество применения для дома

Автоматический выключатель света состоит из двух компонентов. Это приемник сигнала и передатчик. В качестве приемника используется радиоуправляемое реле, которое получает команду и замыкает цепь. Передатчик реагирует на действие и подает сигнал.

Инфракрасные выключатели имеют ряд преимуществ. К ним относятся:

  • простота монтажа;
  • контроль сразу всех осветительных приборов;
  • экономия расхода электроэнергии;
  • широкий радиус приема сигнала в зависимости от модели;
  • дополнительная безопасность помещения (эффект присутствия в доме);
  • комфорт включения и выключения света;
  • электрическая безопасность, так как устройство слаботочное;
  • дистанционное регулирование яркости света.

Главный недостаток таких приборов – высокая цена перед традиционными аналогами. Но с развитием технологии отмечается тенденция к понижению стоимости. Также проблемой является ограничение радиуса действия и невозможность сигнала проникать через препятствия.

Читать еще:  Нужна ли розетка для светодиодного светильника

Как устроены выключатели, реагирующие на взмах руки

Любой инфракрасный выключатель состоит из двух основных компонентов: передающего и принимающего. Выключатель, реагирующий на взмах руки, срабатывает при регистрации теплового излучения от человека. Подобные устройства удобно использовать на кухне, при подсветке зеркала в ванной комнате, в темных помещениях. В роли сенсора выступает пироэлектрический датчик, который фиксирует инфракрасное излучение объекта.

Устройство

Выключатель состоит из реле и контроллера в корпусе и инфракрасного датчика, который подключен к нему на проводе. Корпус оснащен «язычком» для крепления на стене. Корпус ставится в максимальной близости к осветительному прибору. Также его можно вмонтировать в распределительную коробку.

Принцип работы

Прибор работает по следующему принципу. Он реагирует на взмах руки в близости от сенсора, свет в помещении загорается. Если повторно взмахнуть рукой, свет погаснет. Радиус срабатывания равен 1-6 см.

Установленный датчик фиксирует движение человека. В схеме происходит следующее – происходит замыкание цепи, в результате чего загорается лампочка. Когда движение прекращается и проходит заранее выставленный промежуток времени, цепь размыкается и лампа погасает.

Отличается от классического выключателя наличием линзы для датчика. Также приборы оснащены тумблером для выключения рукой.

Какие бывают

Существует несколько видов выключателей. Это автоматические устройства с сенсором движения, механические и электронные.

Автоматические с датчиком движения

Для автоматического выключения используются следующие датчики движения:

  • акустические (реагируют на звук);
  • инфракрасные (реагируют на ИК излучение от тела);
  • ультразвуковые;
  • микроволновые.

Первые два вида не излучают ничего и являются пассивными устройствами. Последние два – активные, они посылают волны в помещение в попытке обнаружить объект. Пассивные модели стоят дешевле, они проще по конструкции, но могут ложно реагировать.

ИК выключатели реагируют на тепло человека. Но также срабатывают на тепло животных и нагретые батареи. Они требуют тщательной настройки и установки в место, где не действуют отопительные системы.

Электронные и механические

Механические выключатели работают от прикосновения. Человек должен воздействовать на клавишу, чтобы появился свет. Есть комбинированные выключатели – работают автоматически от движения или пульта и механически.

К электронным относят приборы с различными датчиками: движения, освещения. Также электронные функционируют от пульта дистанционного управления, с телефона или планшета по Wi-Fi или радиосигналу.

Радиус действия пульта определяется от общей планировки помещения, индивидуальных особенностей комнаты и типа материалов, на которых устанавливаются рабочие составляющие. Недостаток приборов с пультом – периодически нужно заменять батарейку. Область действия составляет 25 метров.

Виды по способу крепления и монтажа

По способу крепления различают потолочные и настенные выключатели. Потолочное изделие имеет большой угол обзора благодаря линзам, которые располагаются по всей окружности сенсора. Настенные устройства имеют ограниченный угол из-за конструктивных особенностей.

Безопасно ли применение ИК-лучей?

В повседневной жизни человек постоянно находится под воздействием инфракрасного излучения. К ним относят солнечный свет, отопительные системы, лампы накаливания и другие приборы. ИК волны бывают коротковолновые, средневолновые и длинноволновые. В целом влияние лучей от выключателя незаметно для человека.

Дополнительные опции

Современный инфракрасный выключатель работает от пульта дистанционного управления. Для этого устройство программируется на определенный тип пульта, задаются определенные действия на кнопки. Для управления можно использовать обычный телевизионный пульт ДУ.

Выключатель может быть оснащен фотореле. Такие устройства применятся для уличного освещения, когда нет необходимости тратить энергию.

Гаджет может быть оснащен защитой от домашних животных. Сенсоры реагируют на тепло домашних питомцев, поэтому для дома советуется приобрести модель, реагирующую на крупные объекты.

Задержка выключения. Важная функция, так как при отсутствии движения свет погаснет. Параметр настраивается пользователем.

Выбор по цене и производителю

Подобрать подходящий прибор можно по следующим критериям:

  • по источнику питания – выключатель от сети 220 В или от аккумулятора;
  • по технологии обнаружения движения – инфракрасный, акустический, микроволновый, ультразвуковой, комбинированный;
  • по углу обзора – диапазон измерения от 90 градусов до 36 градусов;

  • радиус действия – от 5 до 20 метров;
  • мощность выключателя – зависит от того, сколько светильников будет подключаться к нему;
  • по способу крепления;
  • по наличию дополнительных функций.

Важно уделить внимание и выбору производителя. Не рекомендуется покупать китайские отвары от неизвестных фирм. Такие выключатели могут не выполнять своих обязанностей и прослужить меньший срок. К лучшим производителям относят изделия фирм Simon, PROxima, Legrand, Camelion, Schneider Electric.

Цены на выключатели начинаются от 400 рублей. Стоимость возрастает, если брать прибор известной фирмы, покупать изделия с дополнительными функциями или изготавливать устройство на заказ.

Для домашнего использования не требуется сверхдорогая модель. Можно приобрести PROxima MS-2000 EKF с ИК датчиком, который обойдется в 450 рублей. Также удачным вариантом для загородного дома или коттеджа будет Camelion LX-16C/BI, выполненный в прочном пластике и выдерживающий температуры от -20 градусов до +40 градусов.

Общие рекомендации

Инфракрасный выключатель после покупки нужно отрегулировать. Для этого требуется сделать следующее:

  • отрегулировать чувствительность сенсора;
  • установить время работы во включенном состоянии;
  • если прибор оснащен микрофоном, его также следует отрегулировать.

Многие выключатели оснащаются светодиодным индикатором, который меняет частоту мигания при срабатывании. Это свойство можно использовать при настройке датчика.

Инфракрасный выключатель – это устройство, призванное облегчить и сделать более комфортной жизнь пользователя. Прибор оснащен ИК датчиком, который реагирует на тепло человека. Когда в радиусе видимости сенсора начинается действие, включается светильник. Также выключатель может работать от пульта дистанционного управления.

Полезное видео

Бесконтактный датчик для управления включением освещения

  • Цена: $8.61 (5шт)
  • Перейти в магазин

Небольшой обзор бесконтактного датчика для управления различными нагрузками, хотя основное применение это все таки управление включением освещения.

Некоторое время назад, а если быть точнее, то 6 лет назад я делал домой кухонную мебель и встал вопрос удобного управления освещением. Дело в том что кухня, это то место, где включать свет приходится не только мокрыми, а иногда и грязными руками, например при разделке мяса, соответственно обычные выключатели не так удобны.

Второй причиной было то, что хотелось иметь скрытые выключатели и тогда у меня все получилось. Помог мне в этом мой тезка из беларуси, который выложил в интернете статью о таков выключателе (если не путаю, это она). Я списался с автором и потом по моей просьбе он доработал схему. Сейчас эта схема имеет уже другой вид, но об этом я расскажу позже.
Работает все это почти нормально, опять же, почему именно «почти» я также буду рассказывать в ходе обзора, так сказать — в контексте.

Фотографии делались почти 6 лет назад, 4 сентября (можно сказать годовщина), качество мрак а доступа к выключателям чтобы переснять у меня увы нет.
Как можно понять, была небольшая платка с микроконтроллером и парой светодиод-фототранзистор.
Все это устанавливалось внутри фальшпанели на кухне, для чего было высверлено углубление диаметром 35мм и глубиной около 8мм при помощи сверла Форстнера, затем сделан паз для проводов, фрезера у меня тогда не было потому делал при помощи лома и такой-то матери, получилось грубо и криво 🙁

Но когда все собрано, то почти ничего и не видно. Снаружи только собственно светильник и пара отверстий, они видны вверху снимка.
Из двух выключателей один работает почти отлично, второй относительно быстро перестал нормально себя вести и реагирует только на что-то более отражающее чем рука.

В свете того, что в ближайшее время мне предстоит похожий процесс сборки кухни и установки выключателей я взял для обзора готовый вариант. Он продается как поштучно, так и по 5-10шт, в моем случае это лот 5 штук.

Читать еще:  Схема подсветки выключателя для светодиодного светильника

Мелкие и аккуратные платки, количество сходится, пока вопросов нет 🙂

Размеры печатной платы 40х10мм, высота около 8-8.5мм.
Плата рассчитана на установку в профиль для светодиодных лент, правда модуль собственно датчика при этом немного выходит за плоскость рассеивателя, что немного портит вид. Кроме того следует быть внимательным так как лента подключается аккуратно только одной стороной, если установить наоборот, то полярность подключения будет неправильной. Ничего не сгорит, но придется подключать проводочками крест накрест.

Конструкция предельно проста, небольшая платка, на ней фотодатчик на отражение, микроконтроллер, стабилизатор питания и полевой транзистор для коммутации нагрузки.
В описании заявлено питание 12 Вольт, ток нагрузки до 3 Ампер, при этом мощность нагрузки указана 36-72 Ватта что намекает и о 24 Вольта питании.
Более детальный осмотр выявил, что стабилизатор на входе рассчитан на 40 Вольт, а ключевой транзистор на 30, потому диапазон питания скорее 12-24 Вольта, но больше я бы не подавал. А вот меньше подавать можно, плата нормально работает примерно от 6-7 Вольт.

Микроконтроллер HT68F002, стабилизатор SE8550, полевой транзистор AO3400, максимальный ток коммутации 5.8 Ампера.

Снизу платы компонентов нет, соответственно можно клеить на двухсторонний скотч как светодиодную ленту.

Ссылки на даташиты я привел выше, но посчитал что возможно кому-то пригодится и схема устройства, благо она простая.

Измерять здесь особо нечего, ток потребления заявлен 10мА, реально около 1мА, при включении/выключении подскакивает до 7-10мА.
Но посмотрел осциллографом что творится на выходе управления светодиодом датчика. Режим работы светодиода импульсный, это сделано для того чтобы схема была экономичной так как при непрерывном питания ток потребления был бы порядка 60мА.
Частота включения светодиода около 33 Гц, время свечения 230мкС.

Принцип работы предельно прост, поднесли руку, свет включился, поднесли еще раз, выключился. Следует понимать, что это не датчик движения, ему все равно, ведете вы руку или нет, он реагирует на отражение.
На плате есть место для перемычки помеченное как J1 R0, она подключена к выводы 5 микроконтроллера. При установке перемычки отключается триггерный режим и нагрузка включается пока есть срабатывание датчика.
Также имеется синий светодиодик который светит в выключенном состоянии, очень удобно.

Но как говорится — лучше один раз показать, потому сделал несколько gif-ок для демонстрации.

Обычное внешнее освещение, все работает очень даже удобно, хотя замечал что как-то выключатель сработал сам по себе, даже не понял от чего.
Дальность срабатывания зависит от внешней засветки и при обычных условиях составляет 6-8см.

Засветка от светодиодной ленты практически не влияет на дальность срабатывания.

А вот настольная лампа с галогенкой полностью блокирует его работу. Дело в том, что здесь используется ИК диапазон и нет ни АРУ, ни отсечки непрерывной засветки ни несущей частоты как у ИК фотоприемником для обычного дистанционного управления.
Человек который давно выкладывал свою разработку, сейчас перешел на модель с ИК фотоприемником, а не обычным фототранзистором, такая схема лишена подобного недостатка, но фотоприемник имеет больше размер.

Также работу блокирует засветка от своего светодиода, именно по этой причине у меня стал плохо работать один из моих датчиков, в ДСП были сделаны отверстия, но видимо из-за чего-то через время одна из плат немного поднялась и теперь чтобы включить надо поднести что-то отражающее свет, например металлическую крышку.

Отчасти решить проблемы можно сужением диаграммы направленности фотодиода, например банальным кусочком термоусадки.

Схема начинает работать корректно, но все равно остается проблема при прямой яркой засветке, например у меня когда солнце светит прямо на столешницу, то свет может самопроизвольно включаться/выключатся.

Есть еще одна «особенность», это не поломка, просто она есть. Если поднести руку на определенное расстояние, то выключатель начинает включаться/выключаться. Почему так, не знаю, это происходит даже если к нему ничего не подключено и закрыт светодиод индикации состояния.

И так, что можно сказать в данном случае.
Для начала хорошее. Все работает, датчик включается и выключается, потребляет мало, влазит в стандартный алюминиевый профиль, собран относительно аккуратно.
Но есть и плохое. Из-за того что схема очень проста, есть влияние внешней засветки светильниками с большой отдачей в ИК диапазоне, т.е. обычные лампы накаливания.

У меня как-то была идея простой реализации защиты от указанных выше проблем, разделить фототранзистор и микроконтроллер конденсатором чтобы отсечь постоянное напряжение, а чтобы отсечь помехи, светодиодом передавать простенький код, соответственно когда есть нормальное отражение и микроконтроллер видит что код правильный то включает освещение. Но так как я не программист, то реализовать не смог.
Также еще есть вариант подобного выключателя на дискретных компонентах, если не путаю, то с использованием микросхемы DTMF декодера.

Коротко — применять можно, работает, но при установке следует учитывать «нюансы» описанные выше.

На этом у меня все, надеюсь что этот короткий обзор все таки был полезен.

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Онлайн помощник домашнего мастера

Как подключить светильник – советы по установке современных конструкций и варианты их креплений (105 фото)

  • Освещение

При составлении интерьера важное значение имеет освещение. Именно оно делает комнату уютной, подчеркивает предметы и их формы. Для каждого помещения требуется особый свет. Только правильное подключение световых компонентов обеспечивает равномерное освещение.

Так как же всё-таки правильно подключить свет? Есть два способа:

  • Позвать на помощь специалиста.
  • Попробовать установить своими руками. Много информации имеется в интернете, есть множество фото о том, как подключить светильники.

Краткое содержимое статьи:

Руководство по применению

Рассмотрим инструкцию о том, как подключать светильники:

  • устройство освещения состоит из: гофры, коробок и проводов.
  • для подключения нужно применять медные провода. Оборвавшиеся скрутки рекомендуется обмотать изолентой или пропаять.
  • соединить провод светильника с медными гильзами или клеммником.
  • перед работой следует проверить выключатель проводки и лампочки.

Светодиодное освещение

LED светильники – это сложное устройство. Они делятся на несколько видов. Для их бесперебойной работы следует подобрать модель, которая будет подходить по техническим показателям. Такое освещение используется для жилых домов, цокольных помещений, в прожекторах или в качестве подсветок для архитектурных зданий.

К подключению LED светильников необходимо подойти серьёзно. Такие устройства стоят не дёшево и имеют сложную схему подключения.

Особенности:

  • однотипные светильники хорошо подчёркивают очертания;
  • приборы мощностью более 40 ватт опасны для французских потолков;
  • при подключении освещения на ластиковые потолки следует позаботиться о безопасности проводки;
  • желательно сделать провод упругим и долговечным;
  • желательно каждый раз проверять надёжность крепления и затяжку болтов.

Как подключать точечные светильники

Извлечь петли из кабеля. Если его нет, следует провести два провода от одного отверстия к другому. Начать следует с кабеля питания. Перед работой обязательно обесточить провода.

Разрезать петли и затем оголить. Для одного осветительного устройства нужны два провода по 10 см длиной на каждого.

Оголить каждый кабель нужно примерно на 15 мм. Поместить в клеммник кончик коротких проводов. Другой конец соединить с кабелем подключенном к питанию. При работе важно учитывать маркировки. К примеру: N – это ноль, PE – заземление, L – фаза.

Подключение светодиодных светильников не сложно. Работа займёт 7-10 минут. Для этого необходимы: прибор для оголения провода, плоскогубцы и отвёртки. На натяжной потолок заранее провести все электрические контакты. Затем нужно расположить ди-рейку. На неё и крепятся осветители.

Иногда можно опираться на схемы для подключения светильника. Один конец лампы соединить с фазой (L). Второй конец к нолю (N). Питание поступает за счёт переменного тока. Любой контактный штырь можно подключить к самому проводу. Ведь каждые два контакта замкнуты на одной стороне светильника.

Читать еще:  Светильник с розеткой schuko

Люминесцентные лампы

В отличие от ламп накаливания эти приборы имеют сложную схему подключения. Зажигание ламп зависит от качества переключателей. Пусковые устройства отвечают за длительность эксплуатации ламп.

Рассмотрим пример установки люминесцентного освещения с использование стартера. Это качественная противопожарная конструкция. Стартер обеспечивает включение светильника. С помощью дросселя контролируется ограничение тока и горение разряда на постоянном режиме.

Как подключать люминесцентные светильники? Рассмотрим пример. Нужно установить лампу на 40 ватт. Подключить стартер к торчащим боковым проводам. К остальным подключить дроссель. Параллельно подсоединить конденсатор к питанию.

Порядок подключения освещения

Проектирование. Подвесной потолок с несколькими уровнями требует установки отдельных контуров освещения. Управляет ими специальный выключатель на 220 вольт. План установки рекомендуется придумать накануне работы.

Закрепление и протяжка электропроводов. Проводка крепится при помощи пластмассовых стяжек. В месте крепления светильников сделать петли. Они должны слегка провисать. Таким образом их можно достать через отверстия в потолке.

Сверление дырок. Выполнить монтаж поверхности потолка. Тогда станут видны контуры освещения. Для пластиковых потолков лучше установить освещение в центре. Необходимые отверстия проделываются дрелью. Но можно использовать и другие приборы. Сверление не составляет особых усилий. Диаметр насадки должен быть максимально верный.

Подключение

  • разрезать петли посередине. Концы следует оголить.
  • осуществить соединение проводов с каждым световым прибором. Размер проводков – 10-12 см.
  • каждую сторону светильника зачистить.
  • при работе следует опираться на маркировки.

Заключение

Выполняя монтаж и подключение светильников стоит заранее составить описание и схему работы.

Важно учитывать:

  • чертёж расположения проводки;
  • маркировки ламп освещения;
  • подготовить все необходимые инструменты;
  • особенности тех или иных светильников;
  • обеспечить правильный подбор моделей к световым приборам.

Руководствуясь определённой технологии можно установить встроенные светильники своими руками и на долгое время.

Все о блоках защиты для светодиодных и энергосберегающих ламп

Рано или поздно любые источники света, применяемые в приборах освещения, перегорают. Причин этому множество. В лампочках со спиралью происходит разрыв последней, а в лэд-элементах – расслоение и выход из строя полупроводников кристаллов.

Единственный способ максимально продлить срок службы светодиодных и энергосберегающих ламп – это установить в сеть специальный блок защиты. Рассмотрим, какие основные причины перегорания ламп существуют, каким наилучшим способ защитить их от резких изменений параметров бытовой сети, каковы основные технические данные блоков защиты, что нужно знать при их выборе, как правильно их подключить, установить и подобрать место монтажа.

Почему лампы перегорают

В отличие от обычных ламп накаливания у галогенных принцип работы позволяет частично восстанавливать постоянно утончающуюся в ходе свечения спираль. Это несколько продлевает срок ее действия. Светодиодный кристалл служит на порядок дольше, но он также не застрахован от перегорания. Помимо естественного износа спирали или полупроводниковой матрицы, существует целый ряд специфических причин, значительно снижающих их долговечность. Это такие свойства бытовой сети 220 В, как:

  1. Скачки напряжения.
  2. Фатальные скачки.
  3. Наведенная пульсация.
  4. Паразитарная пульсация.

Рассмотрим их особенности более детально.

Скачки напряжения

Изменение значения напряжение – достаточно характерное явление для отечественной бытовой сети. Любая энергосберегающая светодиодная лампа, оснащенная элементарным гасящим драйвером, имеет защиту от эффекта повышения номинала. С другой стороны, от его падения лэд-элемент не может быть огражден таким блоком. Потребуется также установка высоковольтного конденсатора.

Фатальные скачки напряжения

К этому виду причин поломок светодиодных и энергосберегающих ламп относятся сверхвысокое повышение силы тока и напряжения в сети. Это происходит при разряде молнии в непосредственной близости с линией электропередач. Как правило, стандартные блоки защиты не успевают блокировать воздействие такой мощности, и электроника сгорает моментально. В этом случае происходит эффект мигающих лэд-светильников в отключенном состоянии.

Наведенная пульсация

При близком расположении двух проводников, один из которых ведет к мощному потребителю, во втором, ведущем к светодиодной лампе, возникает достаточная для инициации свечения сила тока. Проблема в том, что такое дополнительно включение/выключение (равное частоте переменного тока, то есть 50 раз в секунду!) очень быстро приведет энергосберегающее устройство в негодность.

Паразитарная пульсация

Эффект паразитной пульсации возникает при использовании выключателей с лэд-подсветкой. Через ее элементы проходит ток, достаточной силы, чтобы возбудить кристаллы светодиодной энергосберегающей лампы. В результате она мигает и, естественно, постепенно расходует ресурс полупроводниковой матрицы.

Как защитить лампы лед от скачков напряжения в электросети

Для устранения мерцания, основной причины уменьшения срока действия лэд-элемента, потребуется установка блока защиты. Это особый прибор, внутри которого расположен элемент с электрическим сопротивлением, несколько меньшим, чем в светодиодной энергосберегающей лампе. Возникающие паразитная и наведенные пульсации просто проходят через него, минуя светильник. Чтобы модуль начал работать, его необходимо подключить к входным контактам самого драйвера питания.

Почему встроенные блоки питания не защищают

Стандартные блоки питания, устанавливаемые в любой энергосберегающей светодиодной лампе, это гасящие драйвера. Их основное назначение – защитить кристалл от скачка напряжения. Однако они не могут предотвратить воздействия на нее микротоков, достаточных для мерцания. Полупроводниковый кристалл имеет меньшее сопротивление, и потому подвергается действию паразитной и наведенной пульсации. Также они не способны предохранить от падения номинала в сети, что также вредно для лэд-элементов. Поэтому требуется установка отдельно блока защиты.

Блоки защиты ламп: подключение и применение, работа и устройство

Блок защиты от импульсных перенапряжений предохраняет энергосберегающие светодиодные лампы от скачков в сети до 20 кВ. В зависимости от конструкционных особенностей он монтируется в схему параллельно или последовательно.

Технические данные

Устройства для защиты от перепадов сети для светодиодов и энергосберегающих ламп характеризуются тремя основными параметрами:

  1. Суммарная мощность потребляемых светильников.
  2. Входное напряжение.
  3. Номинал на выходе.

Важно! Дополнительными характеристиками, влияющими на функциональность блока защиты, являются диапазон рабочих температур и степень защиты от атмосферной влажности.

Особенности выбора

Первым необходимым условием выбора блока защиты для светодиодных и иных энергосберегающих ламп является правильный расчет суммарной мощности потребления. При этом к расчетной мощности для страховки лучше добавить еще 20-30% от полученного значения. Если устройство приобретается не только для лэд-элементов, но и для лампочек накаливания или галогенок, то желательно, чтобы оно было оснащено системой плавного повышения напряжения.

Правила и способы подключения

Блок защиты для одной или нескольких светодиодных или других энергосберегающих ламп устанавливается в самом начале схемы (после выключателя) в соответствии с конструкцией (последовательно или параллельно).

Важно! Если в схеме есть выключатель с подсветкой, потребуется установить дополнительный резистор (около 50 кОм и 1Вт) – параллельно блоку защиты. Последний в неактивном состоянии разрывает цепь, и потому лед-элемент работать не будет.

Места установки защиты

Если блок защиты для светодиодных и энергосберегающих ламп небольшой (до 300 Вт), его можно установить в распределительном модуле для проводки. Однако необходимо иметь ввиду, что он должен хорошо охлаждаться и быть доступным в случае необходимости ремонта или замены.

Основные выводы

Блок защиты устраняет перепады напряжения в сети, обеспечивая длительный срок службы галогенным и прочим энергосберегающим и светодиодным лампам. Чаще всего причиной перегорания лампочек являются:

  1. Скачки напряжения.
  2. Фатальное повышение силы тока.
  3. Наведенная пульсация.
  4. Паразитарная пульсация.

Для надежной защиты энергосберегающих ламп и светодиодных светильников необходимо в начало электросхемы установить параллельно или последовательно (в зависимости от конструкции) специальный блок. При его выборе нужно учесть суммарную мощность электроприборов, а также напряжение на входе и выходе и условия будущей эксплуатации.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector