Gc-helper.ru

ГК Хелпер
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Автоматические выключатели защита двигателей от перегрузок

Защита электродвигателя

Для чего нужна защита двигателя?

Для того чтобы избежать непредвиденных сбоев, дорогостоящего ремонта и последующих потерь из-за простоя электродвигателя, очень важно оборудовать двигатель защитным устройством.

Защита двигателя имеет три уровня:

• Внешняя защита от короткого замыкания установки. Устройства внешней защиты, как правило, являются предохранителями разных видов или реле защиты от короткого замыкания. Защитные устройства данного типа обязательны и официально утверждены, они устанавливаются в соответствии с правилами безопасности.

• Внешняя защита от перегрузок, т.е. защита от перегрузок двигателя насоса, а, следовательно, предотвращение повреждений и сбоев в работе электродвигателя. Это защита по току.

• Встроенная защита двигателя с защитой от перегрева, чтобы избежать повреждений и сбоев в работе электродвигателя. Для встроенного устройства защиты всегда требуется внешний выключатель, а для некоторых типов встроенной защиты двигателя требуется даже реле перегрузки.

Возможные условия отказа двигателя

Во время эксплуатации могут возникать различные неисправности. Поэтому очень важно заранее предусмотреть возможность сбоя и его причины и как можно лучше защитить двигатель. Далее приведён перечень условий отказа, при которых можно избежать повреждений электродвигателя:

• Низкое качество электроснабжения:

• Несбалансированное напряжение/ ток (скачки)

• Неверный монтаж, нарушение условий хранения или неисправность самого электродвигателя

• Постепенное повышение температуры и выход её за допустимый предел:

• высокая температура окружающей среды

• пониженное атмосферное давление (работа на большой высоте над уровнем моря)

• высокая температура рабочей жидкости

• слишком большая вязкость рабочей жидкости

• частые включения/отключения электродвигателя

• слишком большой момент инерции нагрузки (свой для каждого насоса)

• Резкое повышение температуры:

Для защиты сети от перегрузок и короткого замыкания при возникновении каких-либо из перечисленных выше условий отказа необходимо определить, какое устройство защиты сети будет использоваться. Оно должно автоматически отключать питание от сети. Плавкий предохранитель является простейшим устройством, выполняющим две функции. Как правило, плавкие предохранители соединяются между собой при помощи аварийного выключателя, который может отключить двигатель от сети питания.

Автоматические выключатели защиты двигателя DEKraft серии ВА-401

Автоматические выключатели защиты двигателя серии ВА-400 служат для защиты и управления трехфазными асинхронными электродвигателями.

Они обеспечивают защиту от перегрузок, сверхтоков (КЗ) и выпадения фазы. Их корпус изготовлен из негорючей самозатухающей пластмассы. Диапазон уставок тока от 0,4 до 80 А.

Автоматические выключатели серии ВА-400 от компании DEKraft имеют компактные размеры, с лёгкостью могут быть установлены в любой электротехнический шкаф и сохраняют допустимые рабочие характеристики, даже под воздействием повышенных температур. Все устройства этой категории безопасны для окружающей среды, что отражено в соответствующих сертификатах.

В дополнение к самим автоматическим выключателям компания DEKraft выпускает ряд аксессуаров, облегчающих работу с ними.

Принцип действия

Автоматический выключатель защиты двигателя ВА-400 состоит изследующих частей:

  • механизм управления;
  • электромагнитныйрасцепитель;
  • регулируемый тепловой расцепитель;
  • дугасительные камеры и т.д.

Все узлы выключателязаключены в корпус, изготовленный из не поддерживающейгорения пластмассы.

Когда в защищаемом электродвигателе возникает перегрузка или обрыв фазного проводника, ток перегрузки заставляет биметаллическую пластину изогнутся. Она, в свою очередь, толкает рычаг, воздействующий на механизм свободного расцепления. Подвижные контакты с двойным разрывом цепи отходят от неподвижных, тем самым защищая электродвигатель от перегрузки.

При возникновении в линии тока короткогозамыкания (КЗ) сердечник электромагнитного расцепителя толкает рычаг, который воздействует на механизм свободного расцепления. Также автоматически отключается при срабатывании одного из расцепителей. Подвижные контакты с двойным разрывом цепи отходят от неподвижных, тем самым защищая электродвигатель от воздействия токов КЗ.

Сфера применения

Автоматические выключатели защиты двигателя серии ВА-400 DEKraft предназначены для управления и защиты трехфазных асинхронных электродвигателей от короткого замыкания, перегрузки и выпадения фазы. Применяются в системах управления насосами, в системах с дренажными насосами, в станциях подъема, в системах с водозаборными емкостями, в системах с канализационными насосами, вентиляции, станках и оборудовании с электродвигателями.

Также прилагаем видео с нашего сервисного центра Востоктехторг.

Автоматический выключатель защиты двигателя ВА-401

  • Автоматика
    • Автоматика дымоудаления
    • Регуляторы скорости двигателей
    • Щиты управления вентиляторами
    • Щиты управления приточной вентиляцией
    • Щиты управления приточно-вытяжной вентиляцией
    • Терморегуляторы электрокалориферов
    • Приборы для измерения и контроля
      • Датчики дифференциального давления
      • Датчики температуры и влажности
      • Датчики-реле давления жидкости
      • Промышленные термостаты
    • Пульты управления вентиляции
    • Устройство плавного пуска
    • Смесительные узлы
    • Контроллеры
      • Программируемые логические контроллеры Modicon
    • Устройство защиты двигателя
    • Шкафы управления тепловыми завесами
    • Электроприводы Belimo
    • Комплектующие автоматики
    • Щиты управления СВ
  • Вентиляторы
    • Радиальные вентиляторы
    • Вентиляторы дымоудаления
      • Крышные вентиляторы дымоудаления
      • Радиальный вентилятор дымоудаления
    • Канальные вентиляторы
      • Вентилятор прямоугольный
      • Вентиляторы канальные круглые
    • Комплектующие
    • Крышные вентиляторы
    • Осевые вентиляторы
      • Вентиляторы подпора воздуха
      • Общепромышленные
    • Пылевые
  • Нагреватели воздуха
  • Фильтры
    • Фильтры для круглых каналов
    • Фильтры для прямоугольных каналов
  • Воздуховоды
    • Воздуховоды круглые
    • Воздуховоды прямоугольные
    • Воздуховоды дымоудаления
  • Детали систем вентиляции
    • Зонты и дефлекторы
    • Клапаны и заслонки
    • Шумоглушители для вентиляции
  • Воздухораспределители
  • Клапаны противопожарные

Если Вы не нашли интересующую Вас продукцию, обратитесь к нам удобным для Вас способом.

Телефон Горячей линии:
+7 (495) 991-67-50
Бесплатный звонок по России:
8 (800) 250-40-51
e-mail: info@effektvent.ru

Наши специалисты будут рады помочь Вам в подборе оборудования.

* Указана розничная стоимость с НДС за ВА401 с рабочим током до 6,3А

Преимущества

  • Защита от короткого замыкания (КЗ)
  • Защита по току перегрузки
  • Защита по выпадению фаз
  • Диапазон токовой нагрузки до 80А
  • Коммутационная износостойкость: не менее 100 000 циклов (Max частота коммутации 25 циклов/час)
  • Описание
  • Характеристики
Читать еще:  Выключатель автоматический трехполюсный 25а ekf

Назначение
Автоматические выключатели защиты двигателя серии ВА-400 (DEKraft — Schneider Electric) предназначены для защиты трехфазных асинхронных электродвигателей от короткого замыкания, перегрузки и отключения фазы.
Применяются в системах вентиляции, насосном оборудовании, станках и другом оборудовании, где необходимо обеспечить защиту двигателей .

Описание
ВА-401 и ВА-402 состоят из корпуса, изготовленного из негорючей пластмассы, электромагнитного расцепителя, регулируемого теплового расцепителя и т.д.
На автоматическом выключателе имеется возможность регулирования диапазона тока теплового расцепителя. Как правило, устанавливают значение равное номинальному току двигателя или близко к нему. Тепловой расцепитель тепловой не разрывает цепь, пока сила тока в ней не достигнет 1.1 х ток установки, что воспринимается аппаратом как перегрузка.

Габаритные размеры

Технические характеристики

НаименованиеВА-401ВА-402
Номинал. рабочее напряжение Uн, В220-660 В220-660 В
Диапазон установки тока теплового расцепителя0,1- 0,160,1- 0,250,25- 0,400,40- 0,630,63-1,001,0-1,61,6- 2,52,5- 4,04,0- 6,36,0-10,09,0-14,013,0-18,017,0-23,020,0-23,024,0-32,025,0-40,040,0-63,056,0-80,0
Номинал. предельная наибольшая отключающая способность Icu, кА при400/415В505050505050505050505050505050505050
Номинальная рабочая отключающая способность Ics, %100%lcu50%lcu50%lcu
Класс расцепления10А10А
Номинальное напряжение изоляции Ui, B690690
Номинальное импульсное напряжение Uimp, kB66
Механическая износостойкость1000010000
Электрическая зносостойкость20002000
Сечение подключаемого провода, мм22х635
Усилие затяжки зажимных винтов, Нм1,74
Условие эксплуатацииУХЛ4УХЛ4

Таблица подбора автоматического выключателя по номиналу двигателя

Мощность электродвигателя, кВтЛинейный ток, АУставка теплового расцепителя, ААртикулРеференсСтарое наименование
0,180,60,63 . 1ВА401-0,63-1,00А21201ВАМУ1
0,250,91 . 1,6ВА401-1,00-1,60А21202ВАМУ1,6
0,371,21 . 1,6ВА401-1,00-1,60А21202ВАМУ1,6
0,551,51,6 . 2,5ВА401-1,60-2,50А21203ВАМУ2,5
0,7521,6 . 2,5ВА401-1,60-2,50А21203ВАМУ2,5
1,12,72,5 . 4ВА401-2,50-4,00А21204ВАМУ4
1,53,62,5 . 4ВА401-2,50-4,00А21204ВАМУ4
2,25,24 . 6,3ВА401-4,00-6,30А21205ВАМУ6,3
3,07,36 . 10ВА401-6,00-10,0А21206ВАМУ10
4,08,99 . 14ВА401-9,0-14,0А21207ВАМУ14
5,511,39 . 14ВА401-9,0-14,0А21207ВАМУ14
7,515,613 . 18ВА401-13,0-18,0А21208ВАМУ18
11,02220 . 25ВА401-20,0-25,0А21210ВАМУ25
15,02924 . 32ВА401-24,0-32,0А21211ВАМУ32

Схема подключения

УСТРОЙСТВА ЗАЩИТЫ ЭЛЕКТРОДВИГАТЕЛЕЙ

Токозависимые защитные устройства имеют разный принцип действия и несут в себе различные функции, направленные на защиту электродвигателя .

Предохранители
Предохранители предназначены для защиты электрических сетей от перегрузок и коротких замыканий. Конструктивно они состоят из корпуса из электроизоляционного материала и плавкой вставки, выбираемой из такого расчета, чтобы она плавилась прежде, чем температура двигателя достигнет опасных пределов в результате протекания токов перегруза или короткого замыкания. Включаются предохранители последовательно защищаемой сети. Предохранители способны защитить асинхронные электродвигатели, (далее по тексту АД), только от токов короткого замыкания в 10-100 раз превышающие номинальные токи. Токи же перегруза или другие токовые аварии, они будут воспринимать как пусковые токи, не реагируя на них. В лучшем случае, они способны отключить электродвигатель только через несколько минут, что может привести к перегреву обмоток и к аварии АД. Поэтому, для защиты электродвигателей от короткого замыкания в нем самом или в подводящем кабеле, используют предохранители с плавкой вставкой типа аМ с более пологой токо-временной характеристикой. Они способны выдерживать, не расплавляясь, токи в 5-10 раз превышающие номинальные в течение 10 с, что вполне достаточно для запуска двигателя. Для защиты от перегрузки необходимо использовать другие устройства. Предохранители абсолютно не способны защищать от аварий, связанных с авариями сетевого напряжения, от аварий, связанных с нарушением режимов работы АД или тепловым перегрузом, а также от режима холостого хода двигателя. В то же время, при однофазном коротком замыкании, а иногда при сильном перекосе фаз они, как правило, отключают только одну фазу, что приводит к аварийному режиму работы на двух фазах.

Автоматические выключатели (автоматы)
Автоматические выключатели (автоматы) предназначены для включения и отключения асинхронных электродвигателей и других приемников электроэнергии, а также для защиты их от токов перегрузки и короткого замыкания. Автоматы совмещают в себе функцию рубильника, предохранителя и теплового реле. Обеспечивают одновременное отключение всех трех фаз в случае возникновения аварийных ситуаций. В рабочем режиме включение и отключение производится вручную; в аварийном режиме он отключается автоматически электромагнитным или тепловым расцепителем. Важной составной частью автомата является расцепитель, который контролирует заданный параметр защищаемой сети и воздействует на расцепляющее устройство, отключающее автомат. Наибольшее распространение получили расцепители следующих типов:

  1. электромагнитные, для защиты от токов короткого замыкания;
  2. тепловые для защиты от перегрузок;
  3. комбинированные.

Электромагнитный расцепитель состоит из катушки с подвижным сердечником и возвратной пружины. При протекании по катушке тока короткого замыкания сердечник мгновенно втягивается и воздействует на отключающую рейку механизма свободного расцепления.

Тепловой расцепитель представляет собой биметаллическую пластину, соединенную последовательно с контактом. При нагревании ее током перегрузки она изгибается и воздействует на отключающую рейку механизма свободного расцепления с обратно-зависимой выдержкой времени.

Выбор автоматических выключателей производится по номинальному току, характеристике срабатывания, отключающей способности, условиям монтажа и эксплуатации. Правильный выбор характеристики автоматического выключателя является залогом его своевременного срабатывания.

В соответствии со стандартами IEC 898 (стандарт международной электротехнической комиссии) и EN 60898 (европейская норма) по характеристикам срабатывания выключатели бывают трех типов: B, C, D.

Тип B — величина тока срабатывания магнитного расцепителя равна Iв= KIн, при K=3–6 (K=I/Iн – кратность тока к номинальному значению). Бытовое применение, где ток нагрузки невысокий и ток к. з. может попасть в зону работы теплового, а не электромагнитного расцепителя.

Тип C — величина тока срабатывания магнитного расцепителя Iс= KIн, при K=5–10. Бытовое и промышленное применение: для двигателей с временем пуска до 1 сек, нагрузки с малыми индуктивными токами (холодильных машин и кондиционеров).

Тип D — величина тока срабатывания магнитного расцепителя более 10Iн. Применение для мощных двигателей с затяжным временем пуска.

Для выбора автоматического выключателя по отключающей способности необходимо выполнить расчет ожидаемого тока короткого замыкания. Как показывает практика, для большинства типа сетей его значение не превышает 4,5 кА. Для обеспечения контроля за другими видами аварий автоматические выключатели снабжают целым рядом дополнительных устройств. Расцепитель минимального напряжения отключает автомат при недопустимом снижении напряжения, ниже 0,7Uн, расцепитель нулевого напряжения срабатывает при напряжении в сети менее 0,35Uн, где Uн – номинальное напряжение в сети. Независимый расцепитель предназначен для дистанционного отключения автоматического выключателя, электромагнитный привод для дистанционного оперирования выключателем. Расцепитель токов утечки на землю обеспечивает непрерывный контроль за состоянием изоляции установки, защиту от опасности возгорания или взрыва.

Тепловые реле (расцепители)
Тепловые реле применяются для защиты электродвигателей от перегрузок недопустимой продолжительности, а также от обрыва одной из фаз. Конструктивно представляют собой набор биметаллических расцепителей (по одному на каждую фазу), по которым протекает ток электродвигателя, оказывающий тепловое действие. Под действием тепла происходит изгиб биметаллической пластины, приводящий в действие механизм расцепления. При этом происходит изменение состояния вспомогательных контактов, которые используются в цепях управления и сигнализации. Реле снабжаются биметаллическим температурным компенсатором с обратным прогибом по отношению к биметаллическим пластинам для компенсации зависимости от температуры окружающей среды, обладают возможностью ручного или автоматического взвода (возврата). Реле имеет шкалу, калиброванную в амперах. В соответствии с международными стандартами шкала должна соответствовать значению номинального тока двигателя, а не тока срабатывания. Ток несрабатывания реле составляет 1,05 I ном. При перегрузке электродвигателя на 20% (1,2 I ном), произойдет его срабатывание в соответствии с токовременной характеристикой.

Реле, в зависимости от конструкции, могут монтироваться непосредственно на магнитные пускатели, в корпуса пускателей или на щиты. Правильно подобранные тепловые реле защищают двигатель не только от перегрузки, но и от заклинивания ротора, перекоса фаз и от затянутого пуска.

Недостатком тепловых реле является то, что трудно подобрать реле из имеющихся в наличии так, чтобы ток теплового элемента соответствовал току электродвигателя. Кроме того, сами реле требуют защиты от короткого замыкания, поэтому в схемах должны быть предусмотрены предохранители или автоматы. Тепловые реле не способны защитить двигатель от перегрева двигателя в режиме холостого хода или недогруза. Поскольку тепловые процессы, происходящие в биметалле, носят достаточно инерционный характер, реле плохо защищает от перегруза, связанного с быстропеременной нагрузкой на валу электродвигателя. Если нагрев обмоток обусловлен неисправностью вентилятора (погнуты лопасти или проскальзывание на валу), загрязнением оребренной поверхности двигателя, тепловое реле тоже окажется бессильным, т. к. потребляемый ток не возрастает или возрастает незначительно. В таких случаях, только встроенная тепловая защита способна обнаружить опасное повышение температуры и вовремя отключить двигатель.

Таблица выбора теплового реле типа РТЛ (для пускателей типа ПМЛ)

Выбираем защиту электродвигателя от перегрузок

Электродвигатель, как любое электротехническое устройство, не застрахован от аварийных ситуаций. Если меры вовремя не приняты, т.е. не установлена защита электродвигателя от перегрузок, то поломка его может привести к выходу из строя других элементов.

Проблема, связанная с надежной защитой электродвигателей, как и устройств, в которые их устанавливают, продолжает оставаться актуальной и в наше время. Касается это в первую очередь предприятий, где частенько нарушаются правила эксплуатации механизмов, что приводит к перегрузкам изношенных механизмов и авариям.

Чтобы избежать перегрузок, необходима установка защиты, т.е. устройств, которые могут вовремя среагировать и предотвратить аварию.

Защита асинхронного двигателя от перегрузок

Поскольку наибольшее применение получил асинхронный двигатель, на его примере будем рассматривать, как двигатель защитить от перегрузки и перегрева.

Для них возможно пять типов аварий:

  • обрыв в обмотке статора фазы (ОФ). Возникает ситуация в 50% аварий;
  • затормаживание ротора, возникающее в 25% случаев (ЗР);
  • понижение сопротивления в обмотке (ПС);
  • плохое охлаждение мотора (НО).

При возникновении любой из перечисленных видов аварий, существует угроза поломки двигателя, поскольку происходит его перегрузка. Если не установлена защита, ток возрастает на протяжении длительного времени. Но может произойти его резкий его рост при коротком замыкании. Исходя из возможного повреждения, подбирается защита электродвигателя от перегрузок.

Типы защиты от перегрузок

Их несколько:

  • тепловая;
  • токовая;
  • температурная;
  • фазочувствительная и пр.

К первой, т.е. тепловой защите электродвигателя относят установку теплового реле, которое разомкнет контакт, в случае перегрева.

Температурная защита от перегрузок, реагирующая на повышение температуры. Для ее установки нужны температурные датчики, которые разомкнут цепь в случае сильного нагрева частей мотора.

Токовая защита, которая бывает минимальной и максимальной. Осуществить защиту от перегрузки можно, применив токовое реле. В первом варианте реле срабатывает, размыкает цепь, если в статорной обмотке превышено допустимое значение тока.

Во втором, реле реагируют на исчезнувший ток, вызванный, к примеру, обрывом цепи.

Эффективную защиту электродвигателя от повышения тока в обмотке статора, следовательно, перегрева осуществляют при помощи автоматического выключателя.

Электродвигатель может выходить из строя из-за перегрева.

Отчего он случается? Вспоминая школьные уроки физики, все понимают, что, протекая по проводнику, ток его нагревает. Электродвигатель не перегреется при номинальном токе, значение которого указывается на корпусе.

Если же в обмотке ток по разным причинам начинает увеличиваться, двигателю грозит перегрев. Если мер не предпринять, он выйдет из строя из-за короткого замыкания между проводниками, у которых расплавилась изоляция.

Рекомендуем:

  • Классификация электродвигателей
  • Коллекторный электродвигатель переменного тока и его работа
  • Как называется электродоска без руля

Поэтому, нужно не допустить роста тока, т.е. установить тепловое реле — эффективную защиту двигателя от перегрева. Конструктивно оно является тепловым расцепителем, биметаллические пластины которого изгибаются под воздействием тепла, размыкая цепь. Для компенсации тепловой зависимости у реле есть компенсатор, благодаря которому происходит обратный прогиб.

У реле шкала прокалибрована в амперах и соответствует значению номинального тока, а не величине тока срабатывания. В зависимости от конструкции монтируют реле на щиты, на магнитные пускатели или в корпус.

Грамотно подобранные, они не просто не допустят перегрузки электродвигателя, но предотвратят перекос фаз и заклинивание ротора.

Защита автомобильного двигателя

Перегрев электродвигателя грозит и водителям автомобилей с наступлением жары, да еще с последствиями разной сложности – от поездки, которую придется отменить, до капитального ремонта мотора, у которого от перегрева прихватить может поршень в цилиндре или деформироваться головка.

Во время езды охлаждается электродвигатель воздушным потоком, а когда авто попадает в пробки этого не происходит, что и вызывает перегрев. Чтобы его распознать вовремя, периодически следует посматривать на датчик (при наличии такового) температуры. Как только стрелка окажется в красной зоне, необходимо немедленно остановиться для выявления причины.

Нельзя пренебрегать сигналом аварийной лампочки, потому что за ним почувствуется запах выкипевшей охлаждающей жидкости. Затем, из-под капота появится пар, свидетельствующий о критической ситуации.

Как быть в подобной ситуации? Остановиться, заглушив электродвигатель и подождать, пока прекратится кипение, открыть капот. На это уходит обычно до 15 минут. При отсутствии признаков протекания, доливают жидкость в радиатор, и пробуют завести мотор. Если же температура начнет резко расти, осторожно движутся для выяснения причины в сервис для диагностики.

Причины, вызывающие перегрев

На первом месте стоят неисправности радиатора. Это могут быть: простое загрязнение тополиным пухом, пылью, листвой. Устранив загрязнения, решат проблему. Более проблематично бороться с внутренним загрязнением радиатора — накипью, появляющейся при использовании герметиков.

Решением будет замена этого элемента.

Затем следуют:

  • Разгерметизация системы, вызванная треснувшим шлангом, недостаточно затянутыми хомутами, неисправностью краника отопителя, состарившимся уплотнителем насоса и пр.;
  • Неисправный термостат или краник. Определить это легко, если при горячем двигателе осторожно ощупать шланг или радиатор. Если шланг холодный – причина в термостате и потребуется его замена;
  • Помпа, работающая неэффективно или вовсе неработающая. Это приводит к слабой циркуляции по охлаждающей системе;
  • Сломанный вентилятор, т.е. не включающийся из-за вышедшего из строя мотора, муфты включения, датчика, отошедшего провода. Не крутящаяся крыльчатка тоже вызывает перегрев электродвигателя;
  • Наконец, недостаточное уплотнение камеры сгорания. Это последствия перегрева, приводящие к сгоранию прокладки головки, образованию трещин и деформированию головки цилиндра и гильзы. Если из бачка с охлаждающей жидкостью заметно вытекание, приводящее к резкому повышению давления при запуске охлаждения, или появилась в картере маслянистая эмульсия, значит, причина в этом.

Дабы не попасть в аналогичную ситуацию, необходимо проводить профилактику, способную спасти от перегрева и поломки. «Слабое звено» определяют методом исключения, т.е. проверяют последовательно подозрительные детали.

Может стать причиной перегрева неправильно выбранный режим эксплуатации, т.е. пониженная передача и высокие обороты.

Защита от перегрева мотор-колеса

Мотор — колесо велосипеда тоже приходит в негодность после «перенесенного» перегрева. Если в жаркий день на максимальной мощности ехать какое-то время на предельной скорости, обмотки мотор-колеса перегреются и начнут плавиться, как и любого электрического мотора, испытывающего перегрузки.

Далее, наступит очередь короткого замыкания и остановка двигателя, для восстановления работоспособности которого, нужна перемотка. Чтобы его не допустить, существуют контроллеры большой мощности, увеличивающие крутящий момент. Ремонт мотор-колеса, вышедшего из строя, дорогостоящая операция, соизмеримая по финансовым затратам с покупкой нового.

Можно было бы теоретически установить термодатчик, который не допустит перегрева, но производители этого не делают по ряду причин. Одной из них является усложнение конструкции контроллера и удорожания мотор-колеса в целом. Остается одно – тщательно подбирать контроллер в соответствии с мощностью мотор-колеса.

Видео: Перегрев двигателя, причины перегрева.

0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты