Gc-helper.ru

ГК Хелпер
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Автоматический пускатель от автоматического выключателя

Контакты низковольтных аппаратов

Содержание статьи:

  • виды контактов;
  • переходное сопротивление, которое определяет качество сцепления;
  • материалы для контактов;
  • рекомендации по эксплуатации размыкающихся контактов;

  • чем обусловлено применение серебра:
    • низкая скорость окисления под воздействием атмосферного кислорода и озона;
    • что даёт низкое переходное сопротивление, которое незначительно изменяется во времени;
    • из-за низкой температуры плавления применяют металлокерамические контакты с включением Ag.

Контакты для низковольтной аппаратуры (НВА)

Под низковольтными аппаратами понимаются автоматические выключатели, пускатели и контакторы, а также рубильники (выключатели-разъединители).

Контактом или контактным соединением называют соединение двух токопроводящих элементов, которое производят при помощи сжатия. Зачастую, пару контактов составляют – подвижный и неподвижный (или малоподвижный) контакт.

Контактные соединения разделяют на следующие группы:
  • неразмыкающиеся контактные соединения (при нормальной работе не разъединяются, только во время ремонтных или профилактических мероприятий – болтовые соединения);
  • размыкающиеся контактные соединения (контакты низковольтных аппаратов, коммутирующие цепь);
  • скользящие контактные соединения (контакты перемещаются друг относительно друга без потери сцепления, например, шарнирное присоединение ножей рубильника с неподвижными контактами).
Виды контактов, встречающиеся в автоматических выключателях и контакторах:
  • главные контакты (или главная контактная группа);
  • дугогасительные контакты (контакты, предназначенные для гашения электрической дуги);
  • вспомогательные контакты (или дополнительные контакты, или блок-контакты).

Практически во всей, массово выпускаемой, низковольтной аппаратуре главные контакты играют роль дугогасительных.

Раздельные главные и дугогасительные контакты имеются у автоматического выключателя Электрон и контактора серии КТ.
Вспомогательные контакты (поставляют как дополнительную заказную опцию) служат для сигнализации положения главных контактов.

Переходное сопротивление контактов

Одним из наиболее важных параметров для оценки качества контактного соединения является его переходное сопротивление. Снижение переходного сопротивления, приводит к снижению выделяемого тепла при протекание тока. Проводимый ток в основном ограничивается заданной максимальной температурой. Следовательно, чем ниже переходное сопротивление, тем обеспечен лучший контакт.

На практике определяют значение падения напряжения на контактном соединении, через которое высчитывают переходное сопротивление: Rп = ∆Un / In.

Факторы, влияющие на переходное сопротивление следующие:
  • контактное сжатие;
  • форма контактов в месте соприкосновения;
  • окисление контактов;
  • вибрационные нагрузки.

Контактное сжатие.
Самая тщательная обработка поверхности контактов всё равно оставит микронеровности. Тогда металлический контакт возникает в одной либо нескольких точках. Чтобы обеспечить более полное прилегание поверхностей контактов, создают сжимающую силу, которая сдавливает микроскопические бугорки.

Форма контактов в месте соприкосновения.
Кинематика низковольтного аппарата, а также выполняемые им функции определяют поверхности контактного соединения. По характеру контакта выделяют три вида контактных соединений:

  • точечный контакт рис. а (ток проходит сквозь точку);
  • линейный контакт рис. б (ток протекает по совокупности точек – линию);
  • плоскостной либо многоточечный контакт рис. в (ток течёт сквозь несколько точек).

На рисунках показаны виды контактов:
1 – остриё + плоскость; 2 – остриё + сфера; 3 – сфера + плоскость; 4 – две сферы;
5 – призма + плоскость; 6 – цилиндр + плоскость; 7 – два цилиндра;
8 – две плоскости.
Точечный контакт характерен для блок-контактов, где не столь важно качество сцепления и мал проводимый ток (не выше 10 А), усилие сжатия до 5 Н.

Линейный контакт характерен для большинства главных контактов автоматических выключателей, пускателей, контакторов и рубильников, сжимающее усилие до 500 Н.

Многоточечный контакт характерен для неразъёмных болтовых соединений, сжимающее усилие до 5 000 Н. Например, место присоединения кабеля и контактного вывода аппарата либо электротехнической шины и вывода.

Окисление контактных поверхностей.
Все металлы под воздействием атмосферного кислорода и озона окисляются. Наличие оксидной плёнки может существенно повлиять на переходное сопротивление, которое может возрасти в сотни раз.

Приведём примерное изменение переходного сопротивления при температуре +35 °С (данные союзной лаборатории Смурова). Приведенный коэффициент α прямо пропорционален переходному сопротивлению.

Материал контактовПродолжительность окисления, сутокКоэффициент αВозрастание переходного сопротивления, раз
до окисленияпосле окисления
медь (Cu)21,10∙10 -4180∙10 -4164
олово (Sn)121,56∙10 -4110∙10 -477
серебро (Ag)1000,50∙10 -411∙10 -422

Как видно, серебро является наиболее предпочтительным материалом для контактов, эксплуатирующихся в продолжительном режиме. Когда выбраны медные контакты (зачастую, из-за относительно низкой стоимости), применяют регулярное смыкание и размыкание контактов для механического стирания оксидной плёнки либо скользящее контактное соединение.

Вибрация.
Вибрационные нагрузки возникают повсеместно, где монтируют низковольтную аппаратуру. Например, автоматические выключатели устанавливают в распределительные щиты, которые монтируют в промышленных цехах; пускатели устанавливают поблизости с управляемыми асинхронными электрическими двигателями.

Наиболее опасны вибрации, которые направлены по той же линии, что и сжимающее усилие в контактах; а также вибрации, которые могут привести к резонансу крепёжных элементов и контактов. Если сила от вибрации превысит значение сжимающей силы, то произойдёт кратковременное расцепление. При больших токах это грозит свариванием контактов, при малых токах – их обгоранию.

Материалы, применяемые для контактов

Медные контакты
Наиболее распространённым материалом для контактов является медь. Ключевые факторы: высокая электропроводность, хорошая твёрдость, тугоплавкость, а также высокая коммутационная износостойкость. Главным недостаток – быстрое образование оксидной плёнки со значительным возрастанием переходного сопротивления.

Серебряные контакты
Лучший материал для коммутационных аппаратов, работающих в продолжительном режиме. Теплопроводность и электрическая проводимость наилучшая среди металлов. Окисление очень медленное, окислы имеют достаточную проводимость. Отрицательные факторы – плохая коммутационная износостойкость (быстрое выгорание или разбрызгивание серебра), высокая цена.

Вольфрамовые контакты
Механическая прочность вольфрама стабильна в широком диапазоне температур, а также значительно превышает ту же характеристику других контактных материалов. Вольфрам устойчив к высоким температурам электрической дуги (тугоплавкий материал). Отрицательные стороны – подвержен окислению, обладает высокой ценой, переходное сопротивление в разы больше серебряного или медного электрического сопротивления. Основное применение – контакторы с низким амперажём, с высокой частотой включений и отключений.

Графитовые контакты
Графит имеет высокое удельное сопротивление и обладает самой высокой температурой эксплуатации. Графитовые контакты применяют в автоматических регуляторах напряжения и отличают тем, что не свариваются и могут включать большие токи. Износ очень быстрый, что приводит к образованию копоти.

Металлокерамические контакты
Так как у многих массовых коммутационных аппаратов главные контакты совмещены с дугогасительными, то и накладываются противоречивые требования – малое переходное сопротивление, стойкость к высоким температурам электрической дуги, малая подверженность коррозии. Ни один из чистых металлов либо сплавов не проходит проверки. Поэтому нашли выход – гетерогенные сплавы, которые сохраняют свойства отдельно взятых компонентов.

Наиболее простыми двухкомпонентными металлокерамическими контактами работают составы металла с высокой электрической проводимостью в сочетании с маленькой температурой плавления (медь либо серебро) и тугоплавкого металла (молибден или вольфрам). В итоге получается тугоплавкий скелет с вставками из металла с высокой электрической проводимостью. При воздействии дуги, серебро плавиться, но не разбрызгивается, а удерживается в металлокерамике силами смачивания.

Металлы измельчают до получения порошка с частицами порядка 40 мк, затем смешивают, прессуют и запекают при температурах 800-900 °С.
Наибольшее распространение получили сочетания: серебро + окись кадмия (второй материал может заменяться: вольфрамом, молибденом, никелем, графитом), а также медь + графит.

Читать еще:  Чем отличается простой выключатель от проходного выключателя

Для обеспечения хорошей электропроводности в месте соединения металлокерамической пластины с контактной деталью, внутреннюю сторону покрывают подслоем серебра (до 1 мм).

Размыкающиеся контакты

По условиям работы контакты низковольтных аппаратов распределяют по 3 группам:
  • контакты, включающие и отключающие электрические цепи без тока (например, контакты разъединителей). Износ происходит из-за механических факторов, обеспечивают протекание номинального электрического тока либо кратковременное протекание сверхтока;
  • контакты, которые включают и отключают ток при очень малых значениях напряжения (до нескольких вольт). Например, контакты контакторов ускорения. При работе подвержены не только механическому износу, но и незначительному электрическому износу (возникновение искры);
  • контакты, которые коммутируют ток при номинальном напряжении (контакты автоматических выключателей, пускателей и контакторов, рубильников).

Остановимся на последней группе.
Основная задача таких контактов обеспечить беспрепятственное протекание номинального тока и сверхтока (короткие замыкания, перегрузки). Изнашиваются контактные группы в основном из-за выгорания и разбрызгивания материала при гашение электрической дуги, механические факторы играют второстепенную роль. Повторное включение допустимо после остывания контактов.

Интенсивность исчезновения контактного материала зависит от силы отключаемого тока, применяемого материала, способа гашения дуги. При включение, некоторое время контакты вибрируют, что тоже может привести к износу.

Наиболее тяжёлые условия у тех контактов, которые смыкаются во время протекания аварийных токов. Проявляется сильный отброс контактов друг от друга из-за электродинамических сил, рождается мощная электрическая дуга. Близкие условия у контакторов, запускающих мощные электрические двигатели, пусковые токи могут отличаться от номинальных на порядок.

Важными факторами, за которыми нужно следить во время эксплуатации являются:
  • начальное и конечное сжатие (в основном обеспечивается пружиной, которую следует регулярно менять);
  • провал контактов (расстояние между точкой сцепления и положением, которое занимает подвижный контакт при отсутствие неподвижного);
  • состояние контактных поверхностей;
  • наличие проскальзывания или переката, если они гарантируются кинематической схемой.

Посеребренные и металлокерамические контакты не следует зачищать напильником. Зачищают лишь заметные бугорки и остывшие брызги металла. После каждого аварийного отключения следует протереть поверхности ветошью смоченной в бензине для устранения гари. Зачастую, приработанные контакты проводят ток лучше, чем новые. Не следует употреблять какую-либо смазку, так как она сгорает и оставляет копоть на контактах.

Развёрнутая информация по уходу за контактами, измерению контролируемых величин находится в книге, указанной ниже (практические рекомендации со страницы 35).

Список использованной литературы
Образцов В. А. Уход за контактами низковольтных аппаратов. – Ленинград: ГосЭнергоИздат, 1959 – 61 с.
Книга в свободном доступе на странице прайс-лист.

Применение автоматических выключателей в системах управления технологическими установками

Рубрика: Технические науки

Дата публикации: 28.01.2018 2018-01-28

Статья просмотрена: 450 раз

Библиографическое описание:

Матвиенко, В. С. Применение автоматических выключателей в системах управления технологическими установками / В. С. Матвиенко, А. А. Дягилев. — Текст : непосредственный // Молодой ученый. — 2018. — № 4 (190). — С. 32-36. — URL: https://moluch.ru/archive/190/48100/ (дата обращения: 02.10.2021).

Работу технологической установки можно рассматривать как технологический процесс, направленный на распределение электрической энергии. Для распределения электрической энергии используют автоматические устройства. В зависимости от функций, выполняемых специальными автоматическими устройствами, различают следующие основные виды автоматизации: автоматический контроль, автоматическую защиту, дистанционное и автоматическое управление, телемеханическое управление.

Современной системе управления технологическими установками необходима автоматическая защита, автоматическое управление и сигнализация для повышения оптимизации управления, надежности, безопасности персонала, обеспечения пожарной безопасности.

Автоматическая защита представляет собой совокупность технических средств, которые при возникновении ненормальных или аварийных режимов либо прекращают контролируемый производственный процесс (например, отключают определенные участки электроустановки при возникновении на них коротких замыканий), либо автоматически устраняют ненормальные режимы. Автоматическая защита тесно связана с автоматическим управлением и сигнализацией. Она воздействует на органы управления и оповещает обслуживающий персонал об осуществленной операции. [1]

Для организации современной системы управления используются автоматические выключатели, присутствующие в двух- или многоуровневой архитектуре схемы. Эти автоматические выключатели могут управляться оператором либо автоматизированной системой управления (ПЛК контроллер), либо как в многоуровневой архитектуре — оператором и АСУ.

Актуальность данной темы заключается в усовершенствовании систем управления технологическими установками на предприятиях. При усовершенствовании систем управления предприятие станет безопаснее для рабочего персонала и повысится энергоэффективность за счет контроля за режимами работы электрооборудования и обновления парка оборудования.

Целью работы является оценка возможностей электрооборудования для управления технологическими установками и применение в них автоматических выключателей.

Современные автоматические выключатели, кроме своих основных функций (защиты электрооборудования от токов короткого замыкания), позволяют также не только обмениваться данными с другими устройствами, но и системой управления в целом, которая позволяет:

– передавать аварийные сигналы о срабатывании защиты и сведения о выключателе (например, о его состоянии и положении), а также результаты выполненных электронным расцепителем измерений для удаленной системы диспетчерского управления и контроля. Для передачи системе управления сведений о состоянии аппарата (включен, отключен, сработал), выключатели должны быть оборудованы дополнительными контактами, называемыми также контактами для электронного исполнения;

– принимать команды от этой системы (например, на включение или отключение выключателя) или установки функций защиты, делая возможным дистанционное управление аппаратом. Для реализации дистанционного управления, выключатели должны быть оборудованы моторным приводом с электронным интерфейсом.

Самый простой способ взаимодействия — управление двигателем с помощью магнитного пускателя. Пример такой принципиальной схемы показан на рисунке 1.

Рис. 1. Схема управления двигателем с помощью магнитного пускателя

Кнопка SB2 — кнопка «Пуск». При нажатии на нее на катушку пускателя попадает напряжение, так как она оказывается включенной между фазой С и нулем N. Силовые контакты пускателя подают напряжение на двигатель, а блокировочный замыкается параллельно кнопке «Пуск». Поэтому при отпускании кнопки катушка пускателя не теряет питание, так как ток в этом случае идет через блокировочный контакт.

Остановка работающего двигателя после запуска в схеме с блокировочным контактом выполняется с помощью кнопки SB1 «Стоп». При этом, кнопка создает разрыв в цепи, магнитный пускатель теряет питание и своими силовыми контактами отключает двигатель от питающей сети.

Существуют более высокие уровни управления. Пример распределительной электроустановки в системе централизованного автоматизированного управления объектом показана на рисунке 2. В этом случает на неё воздействуют два потока:

– поток энергии, состоящий из электроэнергии, которая передается потребителям, питая нагрузки предприятия;

– цифровой поток, включающий информацию, данные и команды, используемые для управления распределительной электроустановкой. Именно потоком информации управляет система управления.

Рис. 2. Пример схемы управления с потоком энергии и потоком информации

Можно создавать системы контроля с разной архитектурой, вплоть до наиболее многоуровневой.

В качестве примера можно рассмотреть двухуровневую архитектуру. Она состоит из двух уровней: (привести кратко содержание 4-х след абзацев)

1) уровень управления: включает систему управления и регистрации данных (например, SCADA — система диспетчерского контроля и сбора данных). На этом уровне поступающие от датчиков данные регистрируются, отображаются, обрабатываются и передаются на исполнительные механизмы.

2) полевой уровень: включает полевые устройства, оборудованные коммуникационными интерфейсами (датчики, исполнительные механизмы и аппараты защиты, оборудованные соответствующими электронными расцепителями), смонтированными в электроустановке и непосредственно с ней взаимодействующими. На полевом уровне происходит передача данных распределительной электроустановки на уровень управления, а также происходит исполнение команд, поступающих с уровня управления.

Читать еще:  Выключатели автоматические дифференциального тока двухполюсные abb

Программируемый логический контроллер — ПЛК — комплекс электронных и программных компонентов и средств, включая модули ввода-вывода, предназначенный для выполнения логических функций; то есть та часть системы безопасности, которая выполняет логические функции, за исключением сенсоров и исполнительных элементов [2].

Плюсом использования ПЛК является возможность его длительной работы без обслуживания и вмешательства человека, в том числе в неблагоприятных погодных условиях. Кроме этого ПЛК обладает устойчивостью к неблагоприятному воздействию внешней среды, возможностью длительной автономной работы, простотой обслуживания.

Достаточно часто на ПЛК строятся системы числового программного управления станком (ЧПУ).

В системах управления технологическими установками преобладают логические команды над числовыми операциями, что позволяет получить мощные действующие системы в режиме реального времени. В современных ПЛК числовые операции реализуются наравне с логическими. Также в ПЛК обеспечивается доступ к отдельным битам памяти, что является преимуществом перед компьютером.

ПЛК программируются, диагностируются и обслуживаются с помощью программаторов, основанных на базе компьютеров или ноутбуков.

В системах управления технологическими процессами ПЛК взаимодействуют с различными компонентами систем человеко-машинного интерфейса (например, операторскими панелями) или рабочими местами операторов на базе ПК, часто промышленных, обычно через промышленную сеть.

Датчики и прочие устройства подключаются к ПЛК:

– централизованно (непосредственно к ПЛК с помощью вводов/выводов);

– по методу распределённой периферии (датчики и исполнительные устройства связаны с ПЛК посредством каналов связи).

В сфере распределения энергии взаимодействие и диалоговый обмен данными между устройствами защиты возможен благодаря микропроцессорным расцепителям, оборудованным коммуникационным интерфейсом Modbus. Применение этих расцепителей позволяет выключателям:

– обмениваться данными с другими электронными устройствами по коммуникационной шине и взаимодействовать с компьютерными системами управления низковольтных электроустановок;

– интегрировать управление распределительной электроустановкой с системами автоматизации технологического процесса всего предприятия. Например,

объединять информацию (значения тока, напряжения и мощности), поступающую от автоматических выключателей. Таким образом, выключатель с интерфейсом Modbus выполняет не только функцию защиты от сверхтоков и подачи электроэнергии на нагрузки, но и выступает в роли полевого устройства системы управления, функционируя и как передатчик, и как исполнительное устройство.

Передача данных АВ позволяет оптимизировать управление электроустановкой и контролировать потребление электроэнергии. Данные, получаемые с АВ, могут контролироваться, сохраняться и анализироваться для:

– снижения энергопотребления, выходящего из нормируемых значений, путем отключения низкоприоритетных нагрузок. Такой подход позволит избежать переплаты поставщику электроэнергии;

– определения и планирования затрат на электроэнергию, связанных с управляемым технологическим процессом.

Исходя из передаваемой выключателем информации можно:

– управлять системами распределения электроэнергии, гарантируя оптимальную работу питаемых ими технологических процессов;

– производить контроль выходных электрических параметров, поддерживая высокое качество электроснабжения;

– анализировать корректность работы, отказы и срабатывания защиты по предупредительным сигналам с выключателей;

– получать информацию о причинах отказов в определенных секциях электроустановки. Причины отказов можно определить по зарегистрированным значениям фазных токов (например, отключение произошло 24.12.2017 в 15:16 из-за короткого замыкания с током 2345 А в фазе L3). По такой информации проводят статистический анализ условий для выявления возможных причин отказов;

– собирать данные диагностики защитных устройств (например, процент износа главных контактов) для создания плана работ по профилактике оборудования, чтобы свести к минимуму простои и гарантировать непрерывность работы электроустановки. Также возможны сбор и передача основных электрических параметров распределительной электроустановки, исключая специальные приборы.

Благодаря использованию электронных расцепителей экономятся средства на закупке щитовых приборов и место в распределительных щитах, так как не требуются специальные датчики, подключаемые к системе управления.

Реализация возможна на основе ПЛК Овен.

Рис. 3. Внешний вид ПЛК Овен

Связь с ПЛК осуществляется через интерфейсы Ethernet, USB, RS-485, RS-232. Для связи со средой программирования, загрузки и отладки программы используется порт DebugRS-232.

По обеим боковым сторонам контроллера расположены клеммы для подключения дискретных датчиков и исполнительных механизмов.

Для удобства контроля состояния электрооборудования на панели контроллера присутствует светодиодная индикация, маломощный звуковой излучатель.

Классификация магнитных пускателей

Принцип работы МП

Магнитные реле, пускатели, контакторы работают по одному принципу. При подаче на катушку МП соответствующего напряжения (переменного или постоянного) электроток аналогичного рода, проходя по ней, образует магнитное поле, силовые линии которого замыкаются по магнитопроводу верхней части МП, т. е. якорю. Как известно, магнитные силовые линии всегда испытывают стремление сократиться по длине, вследствие чего подвижная часть магнитопровода МП притягивается к нижней ее части, преодолевая сопротивление возвратной пружины. При этом жестко связанные с подвижным магнитопроводом контактные перемычки опускаются вниз и замыкают входные и выходные главные контакты в нижней части МП. Поэтому электрическая схема магнитного пускателя весьма проста.

Одновременно с изменением состояния главных контактов изменяется и состояние всех вспомогательных контактов в корпусе МП или в блоке контактов. При прерывании тока в катушке верхняя часть МП под действием усилия пружины возвращается в верхнее положение, и главные, а также дополнительные контакты размыкаются.

Виды магнитных пускателей

Основным предназначением магнитных пускателей является дистанционное управление трехфазными асинхронными электродвигателями с короткозамкнутым ротором. Они работают при переменном токе, напряжением 380 и 660 вольт, с частотой 50 Гц. В число основных операций входят пуск, остановка и реверсирование.

Дополнительно, магнитные пускатели в совокупности с тепловыми реле, защищают управляемые электродвигатели от возможных перегрузок с недопустимой продолжительностью. В некоторых конструкциях пускателей имеются ограничители перенапряжений, используемые в полупроводниковых системах управления.

В соответствии со схемой включения нагрузки могут быть реверсивными и нереверсивными. Классификация по размещению предполагает магнитные пускатели следующих типов:

  • Открытого исполнения. Устанавливаются в закрытых шкафах, на панелях, и прочих местах, куда не может попасть пыль, влага и посторонние предметы.
  • Защищенного исполнения. Монтируются внутри помещений с низким содержанием пыли в окружающей среде. Исключается попадание воды на оболочку устройства.
  • Пылебрызгонепроницаемого исполнения. Устанавливаются внутри помещений и снаружи под навесами, защищающими от дождя и солнечных лучей.

Дополнительная классификация пускателей осуществляется по следующим признакам:

  • Кнопочный пост на корпусе прибора. Нереверсивные пускатели оборудованы кнопками ПУСК и СТОП, а реверсивные устройства имеют кнопки ПУСК ВПЕРЕД, ПУСК НАЗАД и СТОП. На некоторых моделях в корпусе монтируется сигнальная лампа ВКЛЮЧЕНО.
  • Дополнительные блокировочные и сигнальные контакты. Используются в разных комбинациях, в качестве замыкающих или размыкающих. Они могут быть встроенными или оборудоваться как отдельная приставка. Некоторые дополнительные контакты могут использоваться в качестве составной части общей схемы пускателя. Например, в реверсивных устройствах с их помощью осуществляется электрическая блокировка.
  • Ток и напряжение втягивающей катушки.
  • Наличие в схеме теплового реле. Его основной характеристикой является номинальный ток несрабатывания на средних установках. Регулировка тока несрабатывания выполняется в допустимых пределах + 15% от номинала.

Отдельные виды магнитных пускателей могут быть укомплектованы ограничителями перенапряжения и другими видами установочных изделий

Читать еще:  Hyundai автоматические выключатели сертификат

Реверсивная схема коммутации магнитных пускателей

Схема подключения реверсивного магнитного пускателя применяется тогда, когда требуется обеспечение вращение электродвигателя в обоих направлениях. К примеру, реверсивный пускатель устанавливается на лифт, грузоподъемный кран, сверлильный станок и прочие приборы требующие прямой и обратный ход.

Реверсивный пускатель состоит из двух обыкновенных пускателей собранных по специальной схеме. Выглядит он так:

Схема подключения реверсивного магнитного пускателя отличается от других схем тем, что имеет два совершенно одинаковых пускателя, которые работают попеременно. При подключении первого пускателя двигатель вращается в одну сторону, при подключении второго пускателя, двигатель вращается в противоположную сторону. Если вы внимательно посмотрите на схему, то заметите, что при переменном подключении пускателей, две фазы меняются местами. Это и заставляет трехфазный двигатель вращаться в разные стороны.

К имеющемуся в предыдущих схемах пускателю добавлены второй пускатель «КМ2» и дополнительные цепи управления вторым пускателем. Цепи управления состоят из кнопки «SB3», магнитного пускателя «КМ2», а также изменённой силовой частью подачи питания к электродвигателю. Кнопки при подключении реверсивного магнитного пускателя имеют названия «Вправо» «Влево», но могут иметь и другие названия, такие, как «Вверх», «Вниз». Чтобы защитить силовые цепи от короткого замыкания, до катушек добавлены два нормально замкнутых контакта «КМ1.2» и «КМ2.2», что взяты от дополнительных контактов на магнитных пускателях КМ1 и КМ2. Они не дают возможности включиться обоим пускателям одновременно. На выше приведенной схеме цепи управления и силовые цепи одного пускателя имеют один цвет, а другого пускателя — другой цвет, что облегчает понимание, как работает схема. Когда включается автоматический выключатель «QF1», фазы «A», «B», «C» идут к верхним силовым контактам пускателей «КМ1» и «КМ2», после чего ожидают там включения. Фаза «А» питает управляющие цепи от защитного автомата, проходит через «SF1» — контакты тепловой защиты и кнопку «Стоп» «SB1», переходит на контакты кнопок «SB2» и «SB3» и остается в ожидании нажатия на одну из этих кнопок. После нажатия пусковой кнопки ток движется через вспомогательный пусковой контакт «КМ1.2» или «КМ2.2» на катушку пускателей «КМ1» или «КМ2». После этого один из реверсивных пускателей сработает. Двигатель начинает вращаться. Что бы запустить двигатель в обратную сторону, надо нажать кнопку стоп (пускатель разомкнет силовые контакты), двигатель обесточится, дождаться остановки двигателя и после этого нажать другую пусковую кнопку. На схеме показано, что подключен пускатель «КМ2». При этом его дополнительные контакты «КМ2.2» разомкнули цепь питания катушки «КМ1», что не даст случайного подключения пускателя «КМ1».

Мини-контакторы

Предназначены для дистанционного управления потребителями небольшой мощности. Исполнение: стационарное (монтаж на DIN-рейку или монтажную плату).

Таблица 14.1. Техническая характеристика мини-контакторов

Контакторы и магнитные пускатели

Автоматические выключатели

Автоматические выключатели (автоматы), не обладая недостатками предохранителей, обеспечивают быструю и надежную защиту проводов и кабелей сетей как от токов перегрузки, так и от токов короткого замыкания. Кроме того, они используются и для управления при нечастых включениях и отключениях.

Таким образом, автоматические выключатели совмещают в себе одновременно функции защиты и управления.

Для выполнения защитных функций автоматы снабжаются либо только тепловыми, либо только электромагнитными расцепителями, либо комбинированными расцепителями (тепловыми и электромагнитными).

Тепловые расцепители осуществляют защиту от токов перегрузки,

а электромагнитные — от токов короткого замыкания.

Действие тепловых расцепителей автоматов основано на использовании нагрева биметаллической пластинки, изготовленной из спая двух металлов с различными коэффициентамитеплового расширения. В расцепителе при токе, превышающем тот, на который они выбраны, одна из пластин при нагреве удлиняется больше и вследствие большего ее удлинения воздействует на отключающий пружинный механизм. В результате чего коммутирующее устройство автомата размыкается.

Тепловой расцепитель автомата не защищает питающую линию или асинхронный двигатель от токов короткого замыкания. Это объясняется тем, что тепловой расцепитель, обладая большой тепловой инерцией, не успевает нагреться за малое время существования тока КЗ.

Электромагнитный расцепитель представляет собой электромагнит, который воздействует на отключающий пружинный механизм. Если ток в катушке превышает определенное, заранее установленное значение (ток трогания или ток срабатывания), то электромагнитный расцепитель отключает линию мгновенно.

Настройку расцепителя на заданный ток срабатывания называют уставкой тока.Уставку тока электромагнитного расцепителя на мгновенное срабатывание называют отсечкой.Электромагнитные расцепители не реагируют на токи перегрузки, если они меньше уставки срабатывания.

В зависимости от наличия механизмов, регулирующих время срабатывания расцепителей, автоматы разделяются на неселективные с временем срабатывания 0,02. 0,1 с, селективные с регулируемой выдержкой времени и токоограничивающие с временем срабатывания не более 0,005 с.

Контактор— это аппарат дистанционного действия, предназначенный для частых включений и отключений под нагрузкой силовых электрических цепей. Контакторы не защищают электрические цепи от ненормальных режимов, поскольку у них отсутствуют защитные элементы.

Контактор состоит из электромагнитной системы, обеспечивающей дистанционное

управление; главных контактов силовой цепи; дугогасительного устройства; блок-контактов, включаемых в цепь автоматики и сигнализации.

Контакторы нашли широкое применение в силовых цепях переменного и постоянного тока.

В цепях переменного тока применяют преимущественно трехполюсные контакторы серии КТ с номинальными токами 63. 1000 А. Контакторы при числе полюсов два или три допускают 600. 1200 включений в час.

В сетях постоянного тока применяют контакторы серии КТП с номинальными токами 80. 630 А.

Магнитный пускатель— это трехполюсный контактор переменного тока, в котором до-

полнительно встроены два тепловых реле защиты, включенных последовательно в две фазы главной цепи двигателя.

Магнитные пускатели предназначены для управления (пуска, останова,

реверса) трехфазных асинхронных двигателей с короткозамкнутым ротором мощностью до 75 кВт, а также для защиты их от перегрузки. В отдельных случаях магнитные пускатели используют для включения и отключения некоторых электроустановок, требующих дистанционного управления (наружное и внутреннее освещение, автоматизированные электроприводы и т. п.).

Защита электродвигателя от перегрузок осуществляется тепловым реле РТ. Тепловое реле надежно защищает электродвигатель от перегрузки, но не обеспечивает защиты от коротких замыканий.

Объясняется это тем, что тепловое реле имеет большую тепловую инерцию. При коротком замыкании ток может повредить цепи раньше, чем сработает тепловое реле.

Кроме того, контакты магнитных пускателей не рассчитаны на отключение токов короткого замыкания. По этому в случае применения магнитных пускателей (с тепловыми реле для защиты от перегрузок) для защиты от токов коротких замыканий необходимо устанавливать последовательно с тепловыми реле плавкие предохранители или автоматы с электромагнитными расцепителями.

Магнитный пускатель отключает двигатель от сети при исчезновении напряжения или его понижении до 50. 70% от номинального значения.

До последнего времени наибольшее применение в электрических сетях имели магнитные пускатели серий ПМЕ, ПАЕ, ПМА, однако в настоящее время они заменяются пускателями серий ПМЛ и ПКЛ на номинальные рабочие токи от 4 до 200 А.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector