Gc-helper.ru

ГК Хелпер
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Количество отключений вакуумного выключателя

Почему вакуумный выключатель — это лучшее решение для распределительных сетей 6-10 кВ?

Развитие городской инфраструктуры, постройка новых мощных промышленных комплексов, уплотнительные застройки в центре городов-миллионников ставят перед энергетиками непростые задачи по обеспечению электроэнергией потребителей без снижения качества и надежности электроснабжения. В связи со столь высоким ростом объёмов потребления Стратегия ПАО «Россети» направлена на увеличение объёма генерации не менее чем на 13,3% в периоде 2016-2020 гг.

Помимо роста объёмов потребления и генерации электроэнергии не менее важно её распределение, за которое отвечают, как правило, тупиковые подстанции на классы напряжения 6, 10, 20 и 35кВ. Однако более половины таких подстанций находятся в эксплуатации не менее 30 лет. Оборудование данных подстанций сильно изношено, морально устарело и нуждается в замене.

Стоит отметить, что на каждой электрической подстанции основным элементом защиты цепей являются силовые выключатели. Исходя из этих факторов, а также статистических данных ФСК и МРСК можно сделать вывод о том, что в России ежегодно потребляется не менее 20000 силовых выключателей с классами напряжения 6 и 10кВ. Очевидно, что на столь массовый и ответственный элемент системы электроснабжения налагаются жёсткие требования, как со стороны потребителя, так и со стороны надзорных органов. Основными требованиями, предъявляемыми к силовым выключателям, можно выделить:

  • Соответствие техническим параметрам электросети (Наибольшее рабочее напряжение, отключающая способность, и т.п.)
  • Безопасность персонала при эксплуатации
  • Высокий уровень надёжности
  • Компактность
  • Минимальная необходимость в обслуживании
  • Энергоэффективность

Достичь всех этих качеств в одном аппарате – задача нетривиальная, и далее мы рассмотрим тот путь, который пришлось пройти выключателям для достижения современного уровня их технического развития.

Виды выключателей 6-10 кВ

Первыми выключателями, которые защищали отходящие линии 6-10 кВ в комплектных распределительных устройствах, были баковые многообъёмные масляные выключатели, такие как ВМБ-10. Данный выключатель представляет собой металлический бак, массой 170 кг, который вмещает в себя 50 килограммов трансформаторного масла. Трансформаторное масло выступает в качестве изолирующей контакты разных полюсов среды, также в ней происходит разрыв контактов и гашение электрической дуги. При таком способе гашения дуги масло разлагается, образуя газопаровую смесь, состоящую из 70% водорода и паров испаряющегося трансформаторного масла. Данная смесь охлаждает и расщепляет дугу, а также деионизирует место её возникновения, что способствует скорейшему восстановлению электрической прочности масла. Этот процесс протекает достаточно бурно, давление в газовом пузыре может достигать 12 атмосфер. Именно присутствие масла в конструкции данного типа выключателей и определило их основные недостатки. Таким аппаратам требуется постоянный контроль уровня масла, его доливка, замена после относительного небольшого количества отключений. Выделение водорода, вкупе с высоким давлением внутри выключателя делает данный способ дугогашения достаточно опасным, нередки случаи взрывов и пожаров при применении таких выключателей. Для исключения разлива масла в случае аварии также необходимо строительство маслоприёмников, способных вместить полный объём масла, находящегося в выключателе.

Очевидно, что данный конструктив выключателей был далёк от идеала и не удовлетворял большинству требований, названных ранее. Именно поэтому следующим этапом развития этого класса аппаратов стали маломасляные выключатели.

Масляный малообъемный выключатель (крупно: указатель уровня масла)

В маломасляных выключателях масло уже не несёт в себе изоляционные свойства, а лишь служит газогенерирующей средой. Это позволило снизить общую массу аппарата, и, что особенно важно, объём заливаемого трансформаторного масла. Так, например, выключатель ВМП-10 требует заливки лишь 5кг масла. Помимо этого значительно выросли номинальный ток и отключающая способность, с 1000А до 1500А и с 5,7кА до 20кА соответственно (относительно выключателя ВМБ-10). Обновлённый конструктив масляных выключателей также позволил отказаться от необходимости возведения маслоприёмников. Вместе с тем недостатки, характерные для маслонаполненных выключателей, всё же сохранялись. К тому же на базе масляных малообъемных выключателей было невозможно реализовать быстродействующее АПВ (автоматическое повторное включение). Кроме того, само масло представляло опасность для экологии, и поэтому нельзя было допустить утечку и попадание масла в грунтовые воды.

Трансформаторное масло, как дугогасящая среда, исчерпало себя, поэтому дальнейшее улучшение конструктива не несло в себе каких либо существенных плюсов для характеристик выключателя. Именно поэтому возникла необходимость в поиске более эффективной среды дугогашения. В СССР подобные исследования велись уже в 30-х годах. В ЛФТИ, под руководством известного учёного Б. М. Гохберга, были исследованы электрические свойства ряда газов. Данная работа позволила выявить некоторые полезные свойства шестифтористой серы (SF6), которая получила название «элегаз». Данный газ характеризуется высочайшей электрической прочностью – 89кВ на 1 см. Но промышленное производство элегаза удалось освоить только в конце 1980-х годов.

Масляные малообъемные выключатели серии ВК

Следующим поколением выключателей, которое пришло на смену масляным, стали элегазовые. В отличие от масляных малообъемных выключателей они являются взрыво- и пожаробезопасными, имеют более высокую коммутационную способность (до 40кА), гораздо больший коммутационный ресурс, а также сниженные массогабаритные характеристики. Однако при эксплуатации элегазового оборудования есть несколько важных моментов. После первого гашения дуги в элегазовой среде образуются химически активные и вредные для человека примеси. Вредны они настолько, что, при замене отработавшего элегаза следует быть особо осторожным: использовать респираторы, обеспечить защиту глаз, а внутреннюю поверхность газовых корпусов нужно обязательно нейтрализовать при помощи раствора гашеной извести. Помимо этого, в закрытых распредустройствах требуется установка специальных датчиков, осуществляющих контроль утечек элегаза. К тому же гексафторид серы был признан вредным для атмосферы, как разрушающий озоновый слой. В связи с этим во всех европейских странах, в том числе и в России, стараются избегать применения элегазового оборудования в сетях 6-10 кВ.

С развитием коммутационной электротехники, в сетях 6-10 кВ на смену элегазовым пришли вакуумные выключатели, которые в настоящее время заняли доминирующее положение в структуре распределительных сетей. Особенности конструкции вакуумных выключателей заключаются в использовании вакуумных камер сравнительно небольших размеров и применении глубокого вакуума (давление в камере составляет порядка 5×10-5 мм.рт.ст.) в качестве среды для гашения дуги, что позволило добиться следующих преимуществ по сравнению с выключателями предыдущих поколений:

  • высокая надежность
  • не требуют обслуживания
  • сниженные массогабаритные характеристики
  • широкий диапазон рабочих температур
  • отсутствие вредных выбросов
  • малая потребляемая мощность в цепях оперативного тока
  • возможность любого расположения в пространстве

Несмотря на высочайшие показатели электрической прочности вакуума, долгое время использование данной технологии было ограничено техническим развитием. Однако с момента первых промышленных образцов технические характеристики вакуумных выключателей заметно улучшились. В частности, можно отметить возросшие значения отключаемых токов короткого замыкания (до 50кА). Это стало возможным благодаря особенной геометрии контактов.

Читать еще:  Автоматический выключатель hyundai 160а

В конструкции вакуумных выключателей OptiMat V от КЭАЗ применены спиралевидные контакты . Такая форма контактов вакуумной камеры создаёт радиальное магнитное поле по всей области дуги, что вызывает её быстрое вращение по поверхности контактов и скорейшее затухание, а также минимизирует тепловую нагрузку, позволяет избегать локальных перегревов, выгорания металла контактов, что уменьшает их износ, а также исключает возможность повторного зажигания дуги после прохождения тока через ноль.

Такие разработки позволяют увеличивать общий коммутационный ресурс выключателя.

Контактная система с радиальным магнитным полем вакуумных выключателей OptiMat V

Кроме того, сниженные весо-габаритные параметры вакуумных выключателей (особенно заметно по сравнению с распространенными в России масляными малообъемными выключателями), позволяют специалистам электросетевых компаний производить монтажные и ремонтные работы значительно проще. Сравните: масса вакуумного выключателя OptiMat V — 56 кг, масляного малообъемного серии ВК от 160 до 200 кг + 12 кг масла, а элегазового выключателя ВГП — 120 кг (разница в массе составляет от 2 до 5 раз).

Также большое значение имеет широкий температурный диапазон. Ведь при эксплуатации в зимний период нужно учитывать дополнительные траты на подогрев масла в выключателях предыдущих поколений (масло густеет и препятствует скорейшему расхождению контактов). Здесь же стоит упомянуть и разные токи для катушек включения приводов: 3,9 А при 220 В у вакуумных выключателей OptiMat V и 100 А при 220 В у масляных малообъемных выключателей серии ВК.

Таким образом, вакуумные выключатели, на сегодняшний день, являются самыми современными, технологичными, надежными и экономичными коммутационными аппаратами в распределительных сетях напряжением 6-10 кВ.

Электрика в доме

Проводка, освещение, электрические приборы

Принцип работы вакуумного выключателя

В современной электротехнике для нормальной работы электрических сетей необходимо специальное оборудование, способное производить в них коммутацию. Одним из таких приспособлений является вакуумный выключатель.

Областью применения данного электрооборудования представляются электрические цепи от 6 -35 кВ и реже 110-220В. Вакуумный выключатель способен оградить электрическую сеть от высокого напряжения в процессе коммутации. Одним из плюсов данного оборудования является долгий срок службы, производители заявляют около 25 лет. Профессионалы в данной области прогнозируют вытеснение многих видов выключателей вакуумными заменителями.

Какие бывают вакуумные выключатели

Все вакуумные выключатели подразделяются на две большие группы: выключатели для напряжения до 35кВ и устройства для напряжения свыше 35кВ.

На рамке первого вида прикрепляются три полюса. При этом на каждом из них выполняется дугогасительная камера, а также узел поджатия соединений. Кроме этого, на раме установливается электромагнитный привод. С помощью этого привода происходит руководство дугогасительной вакуумной камерой.

Устройство, рассчитанное на напряжение свыше 35кВ, имеет на каждой раме уже по несколько камер. Если их две, то они располагаются напротив друг друга. Руководство ими происходит посредством изоляционной тяги. В случае если камер три, они устанавливаются в ряд друг за другом. В этом случае ими управляет гидравлическая система.

Вакуумные выключатели типа ВВЭ-10, предназначаются для электролиний, где присутствует напряжение 10кВ, с частотой от 50-6оГц, при этом номинальный ток 630-3200А. При этом сила включаемых ударных токов от 52 до 82кА, а выключаемых – от 20 до 31,5кА.

На основании этого устройства изготовливаются дугогасительные камеры двух полюсов с электрическими подводками и электромагнитным приводом, который руководит функциями срабатывания данного прибора. На лицевой панели располагаются дополнительные устройства, которые регулируют систему управления и сигнализации.

Вакуумные устройства типа ВВ/TEL-10-8/800У2. Используется в электроцепях с напряжением до 20кВ трехфазного переменного тока, соответствующего величине в 50Гц и заземленным нулем. Номинальный ток данного выключателя составляет 8кА.

Благодаря конструктивным особенностям выключатель обладает рядом преимуществ:

  • при работе от сети потребляет малое количество энергии;
  • обеспечен функцией телесигнализации;
  • надежный в эксплуатации;
  • не требует ремонта в период своей службы, срок которой составляет 25 лет;
  • устанавливается в любых электрошкафах различной модификации;
  • безопасен в использовании для окружающей среды.

Как работает вакуумный выключатель

Номинальный ток выключения системы составляет 20-40 кА, при этом занимая 45 миллисекунд времени на отключение. Вся конструкция выключателя собирается на одном общем приводе, в то же время для каждой фазы существует отдельный изолятор. Соответственно входные проводники подсоединяются на шины подстанции, а выводные – на отходящие контакты.

Как определить где фаза, ноль и земля. Цвета проводов вам помогут.

Внутренность дугогасительной камеры состоит из работающих силовых контактов, имеющих минимальное сопротивление. Механизм создан таким образом, что верхняя его часть надежно закрепляется, а нижняя – перемещается в осевой направленности.

Стенки вакуумной камеры изготавливаются из специального вещества и различных сплавов, это создает условия для хорошей герметичности и сохранение ее на долгое время. Конструкция имеет сильфонное устройство, которое исключает попадание воздуха.

Также в нем установливается якорь электромагнита, который способен замыкать и размыкать соединения. Группа пружин создает условия для необходимых скоростей движения якоря при переключениях. В корпусе размещается две системы – электрическая и кинематическая, которые регулируют выключатель в любом положении.

Главным отличием данного устройства от других типов является то, что электрическая дуга в этом случае гасится вакуумом.

Процесс включения и выключения данного устройства производится посредством специальных пружин. При этом на них воздействуют специальные электромагниты или кнопка отключения. Перед использованием необходимо пружину отключения взвести в рабочее положение. Это делается вручную при отсутствии тока или посредством подачи тока в электродвигатель привода. Так, через ключ управления подается ток на соленоид включения.

В процессе этого заводится пружина включения, которая приводит в рабочее состояние вакуумный выключатель. Кроме этого автоматически взводится пружина срабатывания, которая автоматически отключает прибор.

Область применения

По своим функциям данное устройство практически ничем не отличается от своих собратьев. Выключатель предназнается для тех же целей: выключатель гарантирует при длительной эксплуатации прохождение номинальных электрических напряжений; обеспечивает надежную коммутацию электрооборудования электротехниками вручную, а также автоматически для изменения конфигурации действующей схемы; устройство обладает функцией отключения электрической системы при возникновении аварийных ситуаций.

Выключатели применяются в трехфазных сетях переменного тока, частота которых составляет от 50Гц до 60Гц. Электрооборудование устанавливается в районах крайнего Севера, а также в жаркой местности. Они выносят температуру от -60 до +40, их работоспособность при этом не уменьшается.

Плюсы вакуумного переключателя

Вакуумный выключатель имеют ряд преимуществ:

  1. Элементарная конструкция. Агрегат не имеет дополнительных устройств, усложняющих устройство.
  2. Надежность в использовании. Поломка такого электрооборудования практически исключается
  3. Быстродействующий прибор.
  4. Высокая скорость восстановления прочности между контактами.
  5. Для их работы не требуются масла или другие горючие вещества.
Читать еще:  Как правильно подключить двухкнопочный выключатель

Кроме этого отмечают ряд дополнительных плюсов:

  • устройство не имеет больших весовых и габаритных характеристик;
  • бесшумность при использовании; невысокая стоимость.

К тому же производители гарантируют небольшие расходы на эксплуатацию и ремонт.

Перенапряжения в сетях 6(10) кВ

В России у эксплуатационного персонала предприятий электрических сетей сложилось довольно устойчивое мнение, что перенапряжения создают вакуумные выключатели, а элегазовые этого недостатка лишены. Но так ли это? Попробуем разобраться в причинах перенапряжений.

Причины возникновения перенапряжений в сетях

Начнем с простого утверждения, очевидного для любого человека, знакомого с курсом ТОЭ: любая коммутация (включение или отключение) какого-либо элемента сети (трансформатора, электродвигателя, конденсаторной батареи, воздушной или кабельной линии и т.д.) вызывает переходный процесс. Это связано с тем, что сеть является совокупностью индуктивностей и емкостей основного электротехнического оборудования, поэтому подключение или отключение некоторого элемента ведет к установлению нового режима. Переход сети от режима до коммутации к режиму после коммутации сопровождается изменениями токов в элементах и напряжений на них. Как правило, этот переход имеет вид затухающих колебаний, в процессе которых напряжение на емкостях оборудования относительно земли или между фазами может достигать величин значительно больших, чем номинальное. Это и называется перенапряжениями.

Вакуумный выключатель ВБСК-10, ОАО «Электрокомплекс», г.Минусинск

Подобный процесс объективен и не зависит от типа используемого выключателя. Например, можно показать, что при включении (пуске) высоковольтного электродвигателя возможно возникновение перенапряжений с кратностью до 3,3 относительных единиц (о.е.) по отношению к амплитуде наибольшего рабочего напряжения [1], что представляет опасность для его изоляции. Перенапряжения в этом случае не зависят от типа дугогасящей среды и определяются только моментом включения и разбросом замыкания контактов разных фаз.

Вакуумный выключатель 3AH5 Siemens, ССК «Уралинвестэнерго», г.Екатеринбург

Исключить эти перенапряжения регулировкой хода контактов выключателя не представляется возможным. При отключении выключателем любого типа (маломасляным, вакуумным, элегазовым, электромагнитным) практически каждого двойного или двухфазного замыкания на землю в сети 6-10 кВ с изолированной или заземленной через дугогасящий реактор нейтралью на все присоединения, включенные на данную секцию, воздействуют перенапряжения с кратностью до 3,4 о.е.

Вакуумный выключатель ВБЭ-10-20/1600 УХЛ2, ГНПП «Контакт», г. Саратов

Причиной их является неодновременное отключение тока в поврежденных фазах, когда на первой отключившейся фазе напряжение восстанавливается от нуля до амплитуды линейного. При этом в процессе колебаний напряжение достигает величины двойного линейного. Именно эти перенапряжения могут вызывать многоместные повреждения изоляции (и такие случаи известны в эксплуатации), когда из строя выходят сразу несколько высоковольтных электродвигателей или кабелей. И дело тут не в типе дугогасящей среды, используемой в выключателе, а в объективно существующих явлениях.

Элегазовый выключатель HD-4, АBB

Теперь рассмотрим проблему перенапряжений при использовании вакуумных и элегазовых выключателей с учетом особенностей дугогасящей среды и конструкций этих аппаратов, а также нагрузок, ими коммутируемых. При включениях нагрузки (трансформатора, электродвигателя, конденсаторной батареи) правильно спроектированным выключателем (не дающим отскоков контактов) его дугогасящая среда с точки зрения возникновения перенапряжений не играет никакой роли. Перенапряжения в этом случае обусловлены особенностями сети и коммутируемого присоединения как многоконтурных индуктивно-емкостных схем, моментом включения по времени и разбросом в замыкании контактов разных фаз выключателя (см. выше).

Основными причинами перенапряжений на изоляции отдельного присоединения (и только его, а не всей сети) при отключении нагрузки, связанными с особенностями дугогасящей среды и конструкцией выключателя, являются срез тока и эскалация напряжения. Рассмотрим эти явления по порядку.

Любой выключатель отключает ток при прохождении его через ноль (со сдвигом по времени в разных фазах), когда подвод энергии к дуге со стороны сети уменьшается. В околонулевой области тока возможен быстрый распад канала дуги и принудительный спад тока от некоторого значения (как правило, единицы – десятки ампер) до нуля за очень малое время (значительно раньше естественного нуля тока). Это явление называется срезом тока. Возникает оно при отключении малых индуктивных токов (например, токов холостого хода трансформаторов и электродвигателей), неустановившихся токов включения трансформаторов, пусковых токов электродвигателей, токов шунтирующих реакторов.

Срез тока характерен для выключателей любого применяющегося в настоящее время типа (маломасляных, электромагнитных, воздушных, вакуумных, элегазовых). Причиной среза тока в выключателях с гашением дуги в газовой среде являются интенсивное дутье и развитие высокочастотных колебаний на спадающем участке синусоиды отключаемого тока [2]. Дутье вызывает значительное охлаждение плазмы в дуговом промежутке и быстрое уменьшение ее проводимости. Высокочастотные колебания, развивающиеся в контуре: емкость на шинах – нелинейное сопротивление дуги – индуктивность и емкость присоединения, налагаются на ток 50 Гц и приводят к тому, что суммарный ток в дуговом промежутке переходит через ноль и происходит гашение со срезом. В вакуумных выключателях причиной среза тока является неустойчивость дуги при малых токах, так как она горит в парах металла контактов.

Рис.1 Относительные токи среза выключателей с разными дугогасящими средами

Как видно из рис.1, вакуумные выключатели с хром-медными контактами имеют наименьший ток среза. Он составляет 5-6 А по данным различных исследований, информация о которых приведена в [4]. Большинство производителей вакуумных выключателей используют для изготовления контактов именно хром-медные композиции. Элегазовые выключатели с гашением дуги вращением (rotary-arc type) или автодутьём (self-pressurising type) имеют ток среза практически такой же, как и вакуумные выключатели. Это связано с тем, что интенсивность дугогашения у них зависит от величины протекающего тока. У компрессионных (puffer type) и комбинированных элегазовых выключателей с дополнительным поршнем токи среза выше, чем у вакуумных выключателей. В принципе ток среза элегазовых выключателей зависит от величины отключаемого тока, конструкции выключателя и емкости присоединения и может значительно превышать таковой для вакуумных [2]. Таким образом, с точки зрения величины тока среза и создаваемых при этом перенапряжений элегазовые выключатели не имеют никаких преимуществ перед вакуумными.

Кроме величины тока, на перенапряжения при срезе, как уже указывалось выше, влияют индуктивность нагрузки (или мощность) и емкость присоединения (длина воздушной или кабельной линии). При значительной длине присоединения перенапряжений из-за среза тока в выключателе вообще не возникает. Наличие даже небольшой активной нагрузки на вторичной стороне отключаемого силового трансформатора также исключает возникновение перенапряжений по причине среза.Использование таких современных защитных аппаратов, как ОПН, вообще снимает вопрос перенапряжений вне зависимости от типа используемого выключателя. Следует отметить, что в настоящее время в сетях эксплуатируются тысячи маломасляных выключателей с токами среза гораздо больше, чем у вакуумных выключателей. То есть потенциально маломасляные выклю- чатели также способны создавать перенапряжения и причем более высокие, чем вакуумные.

Читать еще:  Дверные звонки проводные с выключателем

Эскалация напряжения

Рассмотрим теперь вторую причину перенапряжений при отключениях нагрузки: эскалацию напряжения. Это явление характерно только для вакуумных выключателей. Однако оно возникает крайне редко, только при отключении пускового тока не успевших развернуться или заторможенных электродвигателей (причем из 100 отключений пусковых токов только 5-10 могут сопровождаться эскалацией напряжения). Физическая сущность этого явления описана в [4]. Перенапряжения в этом (и только в этом) случае могут достигать 6-7-кратных. Осциллограмма (заимствована из [5]), иллюстрирующая подобный процесс, приведена на рис.2.

Рис.2. Экспериментальная осциллограмма отключения пускового тока электродвигателя 6,3 кВ, 736 кВт, подключенного кабелем сечением 3х95, длиной 70 м, вакуумным выключателем с возникновением эскалации напряжения с кратностью 4,0 о.е. в первой отключаемой фазе выключателя [5].

Масштаб: 100 мксек, 5 кВ.

Экспериментальных данных по отключению пусковых токов электродвигателей элегазовыми выключателями практически нет. Создается впечатление, что фирмам – производителям элегазового оборудования неизвестно о перенапряжениях в этом случае, либо публикация таких данных им невыгодна.

Исходя из имеющейся информации [4], можно предполагать, что элегазовые выключатели не склонны к эскалации напряжения. Однако их повышенные по сравнению с вакуумными выключателями токи среза и возможность однократных повторных зажиганий, вероятно, могут быть причиной перенапряжений при отключениях холостых трансформаторов и пусковых токов электродвигателей (при малых длинах кабеля).

Еще раз отметим, что рассмотренный случай отключения пускового тока – достаточно редкое событие, а в некоторых случаях практически невозможное. Поэтому сопоставление элегазовых и вакуумных выключателей с точки зрения коммутационных перенапряжений следует проводить исходя из величины тока среза.

Таким образом, на основании рассмотрения характерных причин возникновения перенапряжений, связанных с характером дугогасящей среды выключателя, можно утверждать, что элегазовые выключатели в этом отношении не имеют преимуществ по сравнению с вакуумными.

Откуда же все-таки возникло такое предубеждение, что только вакуумные выключатели создают перенапряжения? По-видимому, истоки его следует искать на заре внедрения вакуумной коммутационной техники. В первых вакуумных выключателях, установленных в эксплуатацию еще в СССР в начале 80-х годов, для изготовления контактов использовался вольфрам. Разработчики вакуумных камер полагали, что применение этого тугоплавкого металла позволит снизить износ контактов. Однако выключатели с вольфрамовыми контактами были способны создавать значительные срезы тока, порядка 20-30 А. Именно это обстоятельство, а также отсутствие средств защиты от перенапряжений в сетях 6-10 кВ в то время привело к значительному ущербу в результате пробоев изоляции. Энергетика – отрасль консервативная, и однажды сформировавшееся мнение, а особенно отрицательное, очень сложно изменить.

1. Васюра Ю.Ф., Гавриков В.И., Евдокунин Г.А. Коммутационные перенапряжения на высоковольтных двигателях собственных нужд электростанций // Электротехника. — 1984. — № 12. — С. 4-7.

2. Working group paper: Interruption of small inductive currents (chapter 1, 2) // Electra. — 1980. — № 72. — pp. 73-103.

3. Headley A. Meeting system requirements with modern switchgear // Proceedings IEEE Symp. on trends in modern switchgear design 3,3-150 kV. — Newcastle. — 1984. — pp. 9.1-9.5.

4. Евдокунин Г.А., Тилер Г. Современная вакуумная коммутационная техника для сетей среднего напряжения. — С.-Петербург: Издательство Сизова М.П., 2002. — 147 с.

Выбор вакуумных выключателей 6кВ

Выбор выключателя производим аналогично пункту 8.1.

Максимальный расчётный ток на вводе в РУ-10 кВ ГПП:

Предварительно выбираем к установке выключатель типа ВВЭ-М-10-20/1600 [4].

Проверку выключателя сводим в таблицу 9.6

Таблица 8.6 – Выбор и проверка выключателя

Расчётной точкой является точка К-2.

Расчётный тепловой импульс:

,

где — время действия короткого замыкания;

— время срабатывания защиты;

— полное время отключения выключателя [4];

— постоянная времени затухания [4].

Тепловой импульс выключателя:

Выбранный тип вакуумного выключателя прошел проверку, то есть он подходит к установке.

Маркировка выключателя ВВЭ-М-10-20/1600:

Э — с электромагнитным приводом;

10 — номинальное напряжение, кВ;

20 — номинальный ток отключения, кА;

1600 — номинальный ток, А.

Выбор трансформаторов тока 6кВ

Выбор трансформатора тока к цеховому трансформатору ТМЗ производим аналогично пункту 8.3.

На отходящих линиях от РУ- кВ к цеховому трансформатору ТМЗ-400/10 предварительно выбираем трансформатор тока типа ТЛК-10-1-У 0,5/10р [4].

Проверку трансформатора тока сводим в таблицу 8.7.

Таблица 8.7 – Выбор и проверка трансформатора тока

где расчётный тепловой импульс: ,

тепловой импульс трансформатора тока: .

Выбранный тип трансформатора тока прошел проверку, то есть он подходит к установке.

Маркировка трансформатора тока ТЛК-10-1-У 0,5/10р :

Т – трансформатор тока;

Л – с литой изоляцией;

10 – номинальное напряжение;

1 – для размещения на открытом воздухе;

У – для работы в районах с умеренным климатом;

0,5/10р – исполнение вторичной обмотки:

0,5 – класс точности обмотки, предназначенной для подключения измерительных приборов;

10р – 10%-я погрешность обмотки, предназначенной для подключения релейной защиты;

— коэффициент трансформации.

Выбор трансформаторов напряжения 6 кВ

Выбор трансформатора напряжения производим аналогично пункту 8.4.

К установке предварительно выбираем трансформатор напряжения типа 3 ЗНОЛ [4].

SН2 = 200 ВА – мощность нагрузки на выводах разомкнутого треугольника дополнительной вторичной обмотки при напряжении 100 В и коэффициенте мощности нагрузки 0,8 (характер нагрузки индуктивный);

UН1 = 6 кВ – номинальное напряжение первичной обмотки;

UН2осн = 100 В — номинальное напряжение основной вторичной обмотки;

Произведем проверку выбранного трансформатора напряжения:

1. по напряжению .

2. по конструкции и схеме соединения обмотки:

Три трансформатора напряжения, соединенные в звезду.

3. по классу точности: класс точности – 0.5.

Трансформаторы напряжения не проверяют на действие токов короткого замыкания,т.к. они защищены предохранителями

Маркировка трансформатора напряжения 3 ЗНОЛ :

3 – цифра три, то есть три однофазных ТН

З – один зажим первичной обмотки стационарно заземлён;

Н – трансформатор напряжения;

Л – с литой изоляцией;

10 – номинальное напряжение, кВ;

— коэффициент трансформации трансформатора напряжения.

Дата добавления: 2019-09-13 ; просмотров: 206 ; Мы поможем в написании вашей работы!

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector