Gc-helper.ru

ГК Хелпер
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Компрессор выключатель пускового конденсатора механический

Отличия пускового и рабочего конденсатора

Подписка на рассылку

  • ВКонтакте
  • Facebook
  • ok
  • Twitter
  • YouTube
  • Instagram
  • Яндекс.Дзен
  • TikTok

Фазосдвигающие конденсаторы делятся на рабочие и пусковые. В зависимости от конструкции и назначения агрегата, в составе которого они функционируют, могут участвовать в схеме как по отдельности, так и тандемом.

Рабочий конденсатор – элемент, который функционирует весь цикл вращения. Его ёмкость подбирается по формуле С=k∙I/U , где k – коэффициент, учитывающий схему соединения обмоток: 4,8∙103 для △ и 2,3∙103 для Y. Величину тока I можно рассчитать из формулы P=√3∙U∙I∙cos∙η∙φ. Напряжение элемента должно быть не менее чем в 1,15 раз выше сети, но целесообразнее остановить выбор на полуторакратном запасе. Важно отметить, что привод мощностью более 1 кВт предпочтительнее подключать звездой. Также стоит не забывать о присущих любому электродвигателю пусковых токах и для подключения использовать автоматический выключатель с время-токовой характеристикой «D».

Пусковой конденсатор – элемент, выполняющий свою задачу довольно непродолжительный отрезок времени. По достижении двигателем номинальных параметров, происходит отключение пускового участка цепи. Осуществляется это посредством использования специальных кнопочных постов, центробежного выключателя, реже встречается токовое реле, реле времени. Напряжение пускового конденсатора должно быть в 2-3 раза выше номинального в силу факторов, разобранных выше. При этом нужно иметь в виду, что согласно используемого «ФСК ЕЭС» ГОСТ 29322-2014 Таб. А.1 напряжение в сети может находиться в диапазоне от 198 до 253 В. Ёмкость пускового конденсатора в 2,5 раза должна превышать соответствующий параметр рабочего конденсатора: Cп=2,5∙Ср. Исходя из соображений безопасности, пусковой конденсатор шунтируется разрядным резистором, который снимает остаточный заряд в течении 50 с.

Существуют разные варианты подключений и они вносят свои коррективы в расчёты: если в схеме пусковая обмотка и пусковой конденсатор участвуют кратковременно – на 1 кВт приходится около 70 мкФ. Для рабочего конденсатора с допобмоткой будет достаточно 30 мкФ. Когда схема предусматривает разгон с пусковым, а работу с рабочим конденсатором на каждый кВт потребуется 10 мкФ.

Как видно, конструктивно разницы между пусковым и рабочим конденсаторами нет. Отличаются они параметрами, которые зависят от используемой схемы. Если расчёты показали необходимость использования ёмкости, которой нет в списке стандартных величин производителя, можно набрать схему из нескольких конденсаторов: при параллельном подключении ёмкости суммируются, а при последовательном расчёт выполняется по формуле 1/Собщ= 1/С1+1/С2+…1/Сn. Не стоит завышать ёмкость – это чревато перегревом. В свою очередь заниженный параметр не даст вращающего момента нужной величины, что не позволит ротору стартовать. Важно помнить, что с годами конденсаторы теряют ёмкость и перед использованием «великовозрастной» запчасти стоит проверить её показатели измерителем ёмкости.

В завершении уместным будет осветить нормативную сторону вопроса. В РФ устройство конденсаторов для двигателей переменного тока регламентируется ГОСТ IEC 60252-1-2011 и ГОСТ IEC 60252-2-2011, идентичными международным IEC 60252-1:2001 и IEC 60252-2:2003 соответственно. При этом в НТД от МЭК впоследствии были внесены значительные правки, а вот отечественные стандарты остались без корректив до сих пор. Среди прочих изменений было увеличено количество классов защиты и значительно расширены требования по информации, наносимой на деталь.

Схема подключения конденсаторов компрессора

В ответ на просьбы выложить схему подключения эл. двигателя и величины емкости конденсаторов, как и обещал, дополняю свою статью.
В связи с тем, что эл. двигатель на разных компрессорах может отличаться своей мощностью, то при подборе конденсаторов можно пользоваться очень простой схемой их подборов:
— емкость рабочего конденсатора рассчитывается так: на каждые 100Вт (0,1 кВт) мощности эл. двигателя берется 7 мкФ. Например, эл. двигатель 1 кВт, то соответственно 10×7=70 мкФ.
— емкость пускового конденсатора берется из расчета в 2 – 3 раза больше, чем емкость рабочего конденсатора. Следует учитывать, что эта емкость берется в сумме с рабочей, то есть для двигателя 1 кВт рабочая равна 70 мкФ, умножаем на 2 и получаем необходимое значение. Это 140 мкФ емкость пускового конденсатора. В момент включения она соединяется с рабочим конденсатором и в сумме получается 210 мкФ.

Максимальной мощности двигателя на 380 В в сети 220 В можно достичь, только используя соединение в треугольник. Кроме минимальных потерь по мощности, неизменным остается и число оборотов двигателя. Здесь каждая обмотка используется на свое рабочее напряжение, отсюда и мощность. Схему подключения эл. двигателя нарисовал от руки как смог в Paint.

Проблема…
После покупки компрессора столкнулся с проблемой запуска его в гараже. И связано это не с неисправностью компрессора, а с напряжением в гараже – электричество в нем, что бы свет горел. Поначалу компрессор после нескольких попыток включения-выключения запускался, когда «прогреется». Потом стал включаться, только когда на улице горело освещение, а потом и вообще отказывался запускаться…

Компрессор Fiac CCS 50/338 M
Объем ресивера 50 л
Вес 55 кг
Мощность 2,25 кВт
Напряжение 220 В
Производительность 330 л/мин
Рабочее давление 10 бар

Поиск причин проблемы показал, что в момент запуска асинхронного двигателя пусковой ток возрастает, но местная сеть не способна обеспечить данную мощность.
Есть вариант установить стабилизатор напряжения, но он должен быть достаточно мощным, что бы выдержать скачки нагрузки. Я решил попробовать данный вариант и для моего компрессора мощностью 2,5 кВт я взял стабилизатор RUCELF SDW-10000-D номинально мощностью 10кВт.
Ситуация улучшилась – компрессор снова стал запускаться после нескольких попыток включения-выключения, но только еще добавились танцы с стабилизатором – при выходе компрессора на «режим» он выключался по защите. После «прогрева» компрессора – он запускался без «танцев». Но это тоже не то, что нужно.

Есть другой вариант…
Так как трехфазный двигатель моего компрессора включен в однофазную сеть подключением третьей обмотки через фазосдвигающий конденсатор, то того чтобы электромотор запускался «легче», емкость конденсатора должна меняться:
— запуск — с пусковым конденсатором (ввиду больших пусковых токов),
— после разгона — его пусковой конденсатор отсоединяют, оставляя только рабочий.
Если пусковой конденсатор не отсоединить – двигатель перегреется и сгорит.
Решил попробовать и этот вариант.

Схема.
Общая схема достаточно простая.

При старте компрессора пусковой конденсатор Сп подключается параллельно рабочему Ср – на схеме кнопка «Разгон» и через определенное время отключается.
Для того, чтобы автоматизировать процесс – используют реле времени. Подключаем его так, чтобы после включения компрессора он выключался через установленное время и отключал пусковой конденсатор (см. схему далее).

Нашел рекомендации по основным параметрам такой схемы:
— время работы пускового конденсатора – около 3 секунд;
— емкость пускового конденсатора в 2…2,5 раза больше рабочего;
— допустимое напряжение пускового конденсатора должно превышать в 1,5 раза напряжение сети — например 450 В;
— пусковой конденсатор необходимо зашунтировать резистором R1 сопротивлением 200…500 кОм, через который будет «стекать» оставшийся электрический заряд.

На компрессоре установлен двигатель:
Асинхронный, тип 80
Напряжение 230 В, 50Hz
Обороты 1

2850 об/мин
Ток 12 А
cos = 0,95
Мощность 2,5 кВт
Конденсатор 60 мКф

С учетом данной информации приобрел, необходимые компоненты.

Необходимо:
ПРИМЕЧАНИЕ: Ниже указаны цены, которые запомнил.
— конденсатор пусковой ДПС-0,45-120 (120 мкФ, 450 В) – цена 880 рублей;
ПРИМЕЧАНИЕ: Есть пусковые конденсаторы и поменьше, но у меня с ним не сложилось. При испытании он по моей вине вздулся.

— реле ST6P-4, рабочее напряжение 220В, максимальный ток на контактах 5 А;

Читать еще:  Сертификат соответствия автоматический выключатель tdm

Если место позволяет, то можно использовать колодку для реле и избавиться от пайки.

— резистор 200…500 кОм мощность 2 Вт;
— выключатель;
— провода;
— клеммы — для подключения к конденсатору;
— термоусадка/кембрик/изолента;
— корпус;
— два хомута (диаметр около 80 мм).

Инструмент:
— паяльник;
— отвертка;
— нож;
— напильник;
— дрель;
— сверло диаметром 8 мм;
— ключ / головка 12-13;
— «обжимник» – для обжима клемм.

Сначала собираем схему – соединяем внешний конденсатор и реле и засовываем все это в корпус.

Для того, что бы иметь возможность отключить схему – включил в схему выключатель.

Поскольку конденсатор «получился» очень большой и с винтом для крепления – его выбрал основой конструкции – на нем с помощью хомутов закрепил корпус с реле. Для этого немного доработал ухи корпуса.

Установка:
Винтом конденсатора вся эта конструкция крепится к компрессору – для этого на основании компрессора в подходящем месте сверлим отверстие диаметром 8 мм.

Подключение:
Подключение достаточно простое — нужно подключить три провода:
1. Подключение 2 проводов к рабочему конденсатору.
— снимаем конденсатор – он находится под двигателем, и крепится гайкой;

— снимаем защитный колпачок и отсоединяем провода от рабочего конденсатора;
— протягиваем провода от внешнего блока и подключаем их в разрыв между конденсатором и его проводами от двигателя;
ПРИМЕЧАНИЕ: Удобнее, когда цвет проводов внешнего конденсатора и рабочего совпадают – не нужно задумываться при подключении, что и куда цеплять – у меня это синий и красный.
— устанавливаем рабочий конденсатор на место.
2. Подключение управляющего провода к Переключателю давления:
— откручиваем винт и снимаем крышку;
— заводим провод от внешнего блока через отверстие ввода и подключаем к контакту (с коричневым проводом);

— ставим крышку назад.
Устанавливаем время задержки на реле 3 секунды и включаем компрессор.

Ниже видео пример – как себя ведет компрессор с выключенным и включенным внешним пусковым конденсатором.

Выход из строя конденсаторов в цепи компрессора кондиционеров случается не так уж и редко. А зачем вообще нужен конденсатор и для чего он там стоит?

Бытовые кондиционеры небольшой мощности в основном питаются от однофазной сети 220 В. Самые распространённые двигатели которые применяют в кондиционерах такой мощности- асинхронные со вспомогательной обмоткой, их называют двухфазные электродвигатели или конденсаторные.

В таких двигателях две обмотки намотаны так, что их магнитные полюсы расположены под углом 90 град. Эти обмотки отличаются друг от друга количеством витков и номинальными токами, ну соответственно и внутренним сопротивлением. Но при этом они рассчитаны так что при работе они имеют одинаковую мощность.

В цепь одной из этих обмоток, её производители обозначают как стартовую(пусковую), включают рабочий конденсатор, который постоянно находится в цепи. Этот конденсатор ещё называют фазосдвигающим, так как он сдвигает фазу и создаёт круговое вращающееся магнитное поле. Рабочая или основная обмотка подключена напрямую к сети.

Схема подключения пускового и рабочего конденсатора

Рабочий конденсатор постоянно включён в цепь обмотки через него протекает ток равный току в рабочей обмотке. Пусковой конденсатор подключается на время запуска компрессора – не более 3 секунд (в современных кондиционерах используется только рабочий конденсатор, пусковой не используется)

Расчёт ёмкости и напряжения рабочего конденсатора

Расчёт сводится к подбору такой емкости, чтобы при номинальной нагрузке было обеспечено круговое магнитное поле, так как при значении ниже или выше номинального магнитное поле изменяет форму на эллиптическое, а это ухудшает рабочие характеристки двигателя и снижает пусковой момент. В инженерных справочниках приведена формула для расчёта ёмкости конденсатора:

Ср= Isinφ/2πf U n 2

I и sinφ –ток и сдвиг фаз между напряжением и током в цепи при вращающемся магнтном поле без конденсатора

f- частота переменного тока

U – напряжение питания

n- коэффициент трансформации обмоток , определяется как соотношение витков обмоток с конденсатором и без него.

Напряжение на конденсаторе рассчитывается по формуле

Uc= U√(1+n 2 )

Uc -рабочее напряжение конденсатора

U – напряжение питания двигателя

n – коэффициент трансформации обмоток

Из формулы видно, что рабочее напряжение фазосдвигающего конденсатора выше напряжения питания двигателя.

В пособиях по расчёту приводят приближённое вычисление – 70-80 мкФ ёмкости конденсатора на 1 кВт мощности электродвигателя, а номинал напряжения конденсатора для сети 220 В обычно ставят – 450 В.

Также параллельно к рабочему конденсатору подключают пусковой конденсатор на время пуска, примерно на три секунды, после чего срабатывает реле и отключает пусковой конденсатор. В настоящее время в кондиционерах схемы с дополнительным пусковым конденсатором не применяют.

В более мощных кондиционерах используют компрессоры с трёхфазными асинхронными двигателями, пусковые и рабочие конденсаторы для таких двигателей не требуются.

Работа герметичных компрессоров

С хемы электрического включения герметичных компрессоров определяются типом электродвигателя, примененного для привода компрессора, а также параметрами питающей сети. Для привода компрессоров, предназначенных для подключения к однофазной сети, используются асинхронные конденсаторные двигатели. Асинхронный конденсаторный двигатель имеет на статоре две обмотки. Одну из обмоток, пусковую, включают непосредственно в однофазную сеть, а другую, рабочую, включают через рабочий конденсатор.


Схема включения конденсаторного двигателя с рабочей емкостью наиболее распространена в бытовых кондиционерах (см. рис.)
1 — электродвигатель; 2 — внутренняя электрическая защита (тепловая, токовая); 3,4 — обмотки пусковая и рабочая соответственно; Ср — конденсатор рабочий; R, С, S — выводы обмоток; L — фаза; N — рабочий нуль.

Рабочий конденсатор создает фазовый сдвиг между токами в пусковой и рабочей обмотках статора и остается включенным на протяжении всего периода работы двигателя.

Необходимо помнить, что измерять сопротивление обмоток электродвигателя таких компрессоров следует после остывания компрессора. Иначе можно сделать неверный вывод о наличии обрыва в обмотках.


Для повышения пускового момента параллельно рабочему конденсатору включают конденсатор, называемый пусковым (см. рис.). По окончании пуска этот конденсатор отключается.
На рисунке: 1 — компрессор; 2 — реле пусковое; 3 — реле тепловой (токовой) защиты; 4, 5 — обмотки пусковая и рабочая соответствен.но; Сп — конденсатор пусковой; Rш — резистор шунтирующий.

Г ерметичные компрессоры для трехфазной сети используют в качестве привода трехфазные асинхронные двигатели с короткозамкнутой обмоткой ротора. Для запуска таких компрессоров применяют метод непосредственного включения электродвигателей в сеть, который благодаря своей простоте получил наибольшее распространение для электродвигателей компрессоров мощностью до 7,5 кВт. Однако он имеет один существенный недостаток: в момент подключения двигателя к сети в обмотке статора возникает большая пусковая сила тока, в 5. 7 раз превышающая значение номинальной силы тока двигателя. Значительный бросок силы тока в питающей сети может вызвать заметное падение напряжения.

В цепи питания трехфазного двигателя, являющегося приводом ротационного, спирального компрессоров, всегда устанавливают реле контроля чередования фаз для предотвращения обратного вращения.

Для предотвращения автоматического повторного включения такие защиты, как токовая защита, внутренняя тепловая защита, датчик высокого давления и т. п., включаются по схеме с самоудержанием.

Электрические цепи подразделяются на рабочие цепи и цепи защиты. Для обеспечения функционирования рабочих цепей предназначены: пусковое реле, пусковой конденсатор, рабочий конденсатор, шунтирующий резистор.

Пусковое реле служит для подключения пускового конденсатора параллельно рабочему на время запуска электродвигателя компрессора. Обмотка реле включена параллельно вспомогательной обмотке электродвигателя, контакты реле нормально замкнуты. При достижении 75% частоты вращения электродвигателя реле срабатывает и отключает пусковой конденсатор.

В бытовых кондиционерах используется два типа пускового реле: тепловое и реле напряжения. Тепловое реле реагирует на теплоту, выделяемую при прохождении тока через провод. Эти реле снабжены двумя парами контактов для включения пусковой и рабочей обмоток электродвигателя соответственно.

Читать еще:  Где находится автоматический выключатель

Для проверки работоспособности реле его отключают от питания и отсоединяют фазный провод на клемме на выходе реле и соединяют его с клеммой на входе. С помощью токовых клещей замеряют силу тока в нулевом проводе, подключенном к компрессору. Для этого включают компрессор и немедленно отсоединяют провод на реле от входной клеммы. Если компрессор продолжает работать, а сила тока приближается к номинальной, то, значит, реле неисправно и его заменяют. Если компрессор работает при номинальной силе тока, но останавливается в течение 1. 2 мин, то реле неисправно и его заменяют.

Пусковое реле напряжения электромагнитного типа содержит катушку из проволоки, намотанной на сердечник. Реле имеет нормально замкнутые контакты, которые размыкаются при втягивании сердечника в катушку. Реле может заклинить при закрытом или открытом положении контактов. Пусковое реле, заклинившее в закрытом положении, осуществляет пуск электродвигателя, но защитное реле при этом часто включает и выключает электродвигатель.

Пусковой конденсатор устанавливается в пусковой цепи и подключается параллельно рабочему конденсатору только в момент пуска. Условием работоспособности конденсатора служит его емкость. Если емкость меньше номинальной на 20 %, то конденсатор следует заменить.

Рабочий конденсатор включен последовательно с рабочей обмоткой электродвигателя компрессора. Он постоянно включен в рабочую цепь. Рабочий конденсатор повышает КПД компрессора и создает достаточный крутящий момент для запуска электродвигателя с постоянно расщепленной фазой. Если емкость рабочего конденсатора имеет отклонение от номинала более чем на ±10 %, то его заменяют.

Шунтирующий резистор включается параллельно пусковому конденсатору. После запуска компрессора пусковой конденсатор отключается и остается в заряженном состоянии. В момент следующего включения пусковой конденсатор практически мгновенно разряжается через контакты пускового реле и рабочий конденсатор. Наибольшим сопротивлением в этой цепи обладают контакты пускового реле. Выделяемое на них тепло может стать достаточным для сварки контактов. При сварке контактов пускового реле отключение пускового конденсатора станет невозможным, что приведет к выходу его из строя и к пробою изоляции обмотки электродвигателя. Для предотвращения столь серьезных последствий предназначен шунтирующий резистор, на который разряжается пусковой конденсатор после его отключения.

З ащиту компрессоров кондиционеров обеспечивают цепи защиты, которые содержат следующие элементы: реле тепловое (токовое), реле перегрузки, реле внутренней тепловой защиты в управляющей цепи, реле тепловой защиты в цепи питания, реле контроля чередования фаз.

Защита устанавливается на верхнюю часть герметичного корпуса компрессора (имеет внешний вид «таблетки») и отключает компрессор при перегреве или при превышении допустимой силы тока. Выпускаются несколько типов подобных элементов. Одни имеют в своем составе нагреватель и биметаллическую пластину, другие содержат только биметаллическую пластину, которая изгибается при нагревании и размыкает контакты в электрической цепи компрессора. Нагрев происходит от корпуса компрессора или вследствие значительной силы тока, протекающего через пластину (или нагреватель). После остывания биметаллическая защита возвращается в исходное положение, замыкая контакты. Реле включается в цепь асинхронного конденсаторного двигателя таким образом, что при срабатывании отключает питание от вывода (клеммы) С, являющейся точкой соединения рабочей и пусковой обмоток.

Т оковую защиту обеспечивает реле перегрузки, предназначенное для аварийного отключения компрессора в случае превышения допустимой силы тока в цепи его питания. Причинами превышения силы тока могут быть заклинивание компрессора, замыкание обмоток, низкое питающее напряжение. Защитные реле перегрузки, монтируемые снаружи компрессора, выпускают трех модификаций: с двумя клеммами, с тремя клеммами, с четырьмя клеммами. Для проверки реле с двумя клеммами токовыми клещами определяют пусковую и рабочую силу тока электродвигателя компрессора. Амперметр должен показать мгновенный скачок силы тока, превышающий в 4. 6 раз номинальный ток электродвигателя компрессора, который затем снижается до заданной величины. Если ток не уменьшается, а отключение электродвигателя происходит защитным реле, то оно исправно. На рис.: 1 — компрессор; 2 — реле тепловой (токовой) защиты; 3,4 — обмотки пусковая и рабочая соответственно.

Защитные реле с тремя клеммами применяют в электрической схеме компрессора, когда желательна защита не только рабочей, но и пусковой обмоток.

Защитные реле с четырьмя клеммами используют для защиты мощных компрессоров. Эти реле могут быть с биметаллическим элементом или со спиралью. Они имеют два соединения с цепью управления. Если величина силы тока, протекающего через электродвигатель компрессора, выше номинальной, то биметаллический элемент или спираль нагреется, цепь управления размыкается, компрессор останавливается.

Поскольку при снижении тока реле автоматически возвращается в исходное состояние, то этот элемент включается в цепь обмотки пускателя по схеме с самоудержанием.

Р еле внутренней тепловой защиты в управляющей цепи устанавливается непосредственно на выводы обмотки трехфазного электродвигателя компрессора (см. рис.). В качестве термочувствительного элемента используется биметаллическая пластина. Как правило, внутренняя тепловая защита используется вместе с токовой защитой, которая практически мгновенно реагирует на значительные скачки тока. Внутренняя тепловая защита обладает большей инерционностью и предназначена для предотвращения постепенного перегрева обмоток электродвигателя при неисправностях компрессора или элементов гидравлического контура. На рис.: 1 — электродвигатель компрессора; 2 — реле внутренней тепловой защиты; W, U, V — выводы обмоток.

Ротационные, спиральные компрессоры предполагают вращение вала приводного электродвигателя только в одном направлении. Для исключения ошибочного подключения компрессора к трехфазной сети и, как следствие, обратного вращения применяется реле контроля чередования фаз.

Реле контроля чередования фаз имеют еще одну функцию — это контроль значений всех фазных напряжений. Допускается одновременное отклонение фазных напряжений не более чем на 10%, а разница в значениях напряжений фаз (перекос) должна составлять менее 5 %. Несбалансированности напряжений следует уделять особое внимание, поскольку дисбаланс, например, в 5 % увеличивает тепловыделение на обмотках электродвигателя на 50 %.

Реле давления для компрессора

Поршневые компрессоры используются везде, где нужен стационарный или мобильный источник сжатого воздуха. Реле отключает электродвигатель компрессора, когда давление в резервуаре достигает заданного значения, и снова запускает его, если давление в ресивер упало ниже допустимой величины. Оно также сбрасывает лишний воздух в атмосферу.

Принцип работы

Принцип работы блока автоматики несложен. Устройство смонтировано на патрубке, сообщающемся с ресивером. Пружинно-мембранный датчик реле давления для компрессора постоянно измеряет давление. Как только оно падает ниже установленного значения, шток датчика под действием пружины замыкает контакты реле компрессора и подключается электромотор, нагнетающий воздух в резервуар. После достижения заданного давления оно отжимает шток и размыкает контакты, отключая двигатель. Регулировка этих значений доступна пользователю.
Кроме того, по достижении предела рабочего давления срабатывает входящий в состав устройства предохранительный клапан, стравливая излишний воздух из компрессора в атмосферу.

Устройство

Все компоненты прессостата для компрессора собраны в компактном узле, прикрытым пластиковым или металлическим корпусом. В состав изделия входит:

  • Входной и выходной патрубки.
  • Чувствительный элемент- пружина и мембрана.
  • Шток. Соединен с мембраной и размещен внутри витков пружины.
  • Контактная группа.
  • Регулировочные винты.
  • Разгрузочный и предохранительный клапан.
  • Механический выключатель.

Упругость пружины, а, следовательно, и чувствительность датчика, зависит от температуры окружающего воздуха, большинство устройств предназначены для работы в диапазоне температур от -5 до +70 °С.

Узел разгрузки предназначен для выпуска воздуха из цилиндров компрессора после его остановки. Благодаря этому:

  • облегчается его последующий запуск;
  • снижается износ деталей поршневой группы;
  • продлевается срок службы всего агрегата.
Читать еще:  Класс токоограничения автоматического выключателя гост

При срабатывании клапана разгрузки в тишине, наступившей после остановки компрессора, отчетливо слышен резкий характерный звук.

Механический выключатель служит для первичного запуска и окончательной остановки компрессора. У него две позиции: «Включено» и «Выключено». «Включено» активирует системы автоматической работы. Он передает прессостату дальнейшее управление компрессором. Положение «Отключено» предотвращает самопроизвольный пуск мотора при падении напора в ресивере ниже установленного значения.

Предохранительный клапан позволяет сбросить лишнее давление в атмосферу в случае выхода из строя реле и избежать поломки компрессора в этом случае.

Дополнительной защитой электродвигателя компрессора может служить тепловое реле. Его включают в блок автоматики, оно отключает обмотки мотора от питающего напряжения в случае возрастания силы тока, свидетельствующего о перегрузке двигателя.

Настройка воздушного компрессора сводится к установке рабочего давления регулировочным винтом. На регуляторе давления нанесены значения. Более точно давление можно контролировать по манометру.

Виды прессостатных устройств

Выпускается два основных варианта прибора. Пневмомеханическая часть у них идентична, различие определяется в способе замыкания контактов при движении штока:

  • Нормально замкнутые (НЗ). применяется при прямом управлении цепью двигателя малой и средней мощности.
  • Нормально разомкнутые (НР). Движение штока замыкает контакты при достижении предельного давления. Обратное движение размыкает их при его снижении. Контакты используются для управления более мощным реле, запускающим и останавливающим электромотор. Схема получается более сложной, но снижается нагрузка на контакты прессостата, увеличивается ресурс.

При замене реле нужно внимательно проверить, чтобы его вид соответствовал электрической схеме компрессора. его тип.

Установка реле и вспомогательных элементов

Кроме базовых компонентов, устройства часто комплектуются дополнительными приспособлениями, повышающими удобство работы или расширяющими функциональность аппарата.

Их устанавливают на фланцевые соединения, чаще всего — 1/4”

Подключение реле давления к компрессору осуществляется так:

  • Привинтить входящий патрубок к патрубку резервуара.
  • Подключить к фланцам прибора манометр, разгрузочный и предохранительный клапаны.
  • Закрыть заглушками неиспользуемые отверстия.
  • Подсоединить электрический разъем реле к электромотору.

Электромоторы малой мощности подключаются напрямую, более мощные потребуют применения пускателя. Конструкция реле давления должна соответствовать мощности двигателя.

Регулировка и пусконаладочный процесс

На заводе-изготовителе проводят настройку и регулировку устройства. Типовые значения — это 2,8 атм. для верхнего предела и 1,4 для нижнего. Однако иногда возникают ситуации, в которых необходимо регулировать прибор самостоятельно:

  • Настройка после частичного или полного ремонта.
  • Специфические требования устройств — потребителей.
  • Установка реле, первоначально не предназначенного для работы c данным компрессором.

Перед тем, как приступить к регулировке, следует внимательно изучить параметры всех сопрягаемых устройств по их паспортам. Паспортные данные должны соответствовать цифрам, выбитым или отгравированным на табличке, закрепленной на корпусе агрегата.

Главный показатель- это максимальное давление, на которое рассчитан компрессор. Значение, при котором будет срабатывать прессостат, должно быть меньше этого максимума на 0,4-0,5 атм. В реальных условиях работы аппарата, учитывая нестабильность напряжения, потери в уплотнениях, степень износа поршневой группы, это давление может не быть достигнуто. Тогда прессостат не отключит мотор, компрессор будет непрерывно работать, перегреваться и изнашиваться.

Определившись со значениями параметров, можно приступать к регулировке. Для этого необходимо:

  • Снять кожух.
  • Станут доступны две гайки- побольше и поменьше. Это и есть органы регулировки. На корпусе рядом выгравированы стрелки, показывающие направление вращения для увеличения и для снижения параметра соответственно.
  • Большая гайка задает значение, при котором отключается электромотор. При вращении по часовой стрелке значение увеличивается, в обратную сторону- снижается. Она обозначена значком Р (Pressure)
  • Меньшая гайка устанавливает разницу давления включения двигателя по сравнению с значением для отключения. Она обозначается ΔР.

Перед тем, как начать настройку, следует наполнить резервуар не менее чем на 2/3. Последовательность действий следующая:

  • Отключить агрегат от сети.
  • Настроить значения Р и ΔР, вращая регулировочные гайки.
  • Устанавливаемые значения следует контролировать по манометру.

Ряд изготовителей размещают органы настройки снаружи корпуса устройства. Это повышает удобство регулировки, но одновременно повышает риск сбить настройки случайным касанием.

Возможные неисправности прибора

Устройство отличается простотой конструкции и высокой надежностью. Однако и они подвержены неисправностям и поломкам. Ряд мелких затруднений вполне можно исправить своими руками:

  • Утечка воздуха из прибора при включенном насосе. Определяется по характерному свисту и ощущению резкого холодного сквозняка вблизи корпуса. Чаще всего причина в поломке пускового клапана. Для ремонта следует заменить прокладку.
  • Частое включение мотора. Причиной может быть расшатывание регулировочных винтов. Следует провести процедуру регулировки пороговых значений включения и отключения по манометру и при необходимости восстановить паспортные значения.

В случае серьезных проблем опытные мастера рекомендуют не возиться с ремонтом и последующей настройкой, а сразу заменить весь прибор.

Методы устранения поломки

Более сложные работы потребуются, если компрессор не включается. Это может случиться в случае износа и оплавления контактов реле от искр, возникающих в момент прерывания электрического тока. Возможно два метода:

  • В случае небольшого износа контактных групп зачистить площадки надфилем или шкуркой. Следует соблюдать осторожность, чтобы не погнуть ламели. Это продлит срок эксплуатации на несколько недель.
  • Заменить контактные группы на новые из ремонтного комплекта для данной модели.

Для ремонта контактных групп следует проделать следующие операции:

  • Стравить воздух из резервуара и отключить агрегат от сети.
  • Снять реле с компрессора.
  • Удалить кожух.
  • Отключить провода, идущие к контактам.
  • Отверткой поддеть и вытащить из крепления контактную клемму, осторожно высверлить оплавленные площадки.
  • Провод заменяют медной проволокой соответствующего сечения. Она должна входить в отверстие с минимальным зазором. Проволоку пропускают в отверстие и плотно обжимают пассатижами.
  • После ремонта всех оплавленных контактов собрать устройство в обратном порядке.

Тратить время на такой ремонт имеет смысл лишь в случае недоступности фирменных запасных частей для замены.

Схема подключения

Схема подключения реле давления зависит от типа электромотора. Однофазные управляются реле, рассчитанными на 220 В с двумя контактными группами. Для трехфазных электродвигателей ставят прибор на 380 В, с тремя контактными группами, подключающими каждая свою фазу. Использование однофазных коммутаторов для трехфазных нагрузок недопустимо, поскольку одна из фаз остается постоянно подключена к обмотке.

Фланцевые соединений

Ряд производителей устанавливают на свои изделия дополнительные фланцевые разъемы. Чаще всего их два или три, типоразмер- ¼ “. Через них подключают такие узлы, как предохранительный клапан, манометр и т. п.

Установка реле давления

Для монтажа необходимо выполнить следующие операции:

  • Присоединить реле к патрубку ресивера.
  • Подключить манометр, предохранительный и разгрузочный клапаны через фланцевые разъемы.
  • В оставшиеся незанятыми разъемы поставить заглушки.
  • Подключать провода от двигателя к электрическому разъему устройства.
  • Провести регулировку.

Последний пункт следует рассмотреть подробнее.

Регулировка реле

Важно! Регулировка проводится при заполненном минимум на 2/3 резервуаре и отключенном питании.

Изготовитель поставляет проверенные и отрегулированные на стандартные значения приборы.
Если же параметры данного компрессора или особенности устройств –потребителей требую настроить реле на другие значения, следует проделать следующее:

  • Снять кожух устройства.
  • Станут видны две головки под гаечный ключ.
  • Большая управляет давлением отключения и обозначена литерой Р (Pressure).
  • Малая управляет разницей давлений, при которой включится мотор. Ее обозначают литерами ΔP.
  • Стрелки показывают направление кручения для повышения значений (+) и для снижения (-).
  • Контролируя давление по манометру, выставить необходимые значения.

Далее следует собрать устройство в обратном порядке. Компрессор готов к работе.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector