Gc-helper.ru

ГК Хелпер
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Контакт состояния для автоматического выключателя

Контакт состояния для автоматического выключателя

Выбор автоматического выключателя

Введение

В этой статье я рассмотрю «выбор автоматического выключателя» (далее — автомата) для защиты электроприборов. Синонимы фразы в кавычках: «выбор автоматического выключателя по мощности», «выбор автоматического выключателя по току». Для наглядности буду ссылаться на параметры популярных автоматов ИЭК ВА47-29. Приведу примеры выбора автомата.

Картинка к статье про выбор автоматического выключателя

Выбор автоматического выключателя по току

Первый параметр, по которому выбирается автомат — номинальный ток. В обычном модульном автомате 2 расцепителя: тепловой и мгновенный. Второй обеспечивает защиту от сверхтоков, первый — от токов, превышающих номинальный ненамного. Номинальный ток автомата должен быть выше максимального тока защищаемой цепи. А максимальный ток можно высчитать, зная мощность нагрузки.

Ряд номинальных токов автомата ВА47-29 выглядит так: 6, 10, 16, 20, 25, 32, 40, 50, 63 А. ИЭК выпускает такие автоматы и с другими номинальными токами, только те невозможно купить без глубокого поиска и заказа.

Выбор автоматического выключателя по характеристике расцепителя

Для защиты…
1. электроприборов, освещения подойдут выключатели с характеристикой В,
2. двигателей с небольшими пусковыми токами (компрессор, вентилятор) – выключатели с характеристикой C,
3. двигателей с большими пусковыми токами (подъемные механизмы, насосы) – выключатели с характеристикой D.
Для защиты розеточных цепей, куда могут подключаться пылесосы, вентиляторы, электродрели, подойдет характеристика С.

Выбор автоматического выключателя по отключающей способности

Это — максимальный ток, при котором производитель гарантирует разрыв защищаемой цепи. Например, 4,5 кА для ВА47-29. В цепь, где ток короткого замыкания превысит 4500 А, такой автомат ставить нельзя.

Остальное

У таких популярных автоматов, как ВА47-29, есть масса дополнительных черт…

  • наличие индикатора положения контактов
  • широкий диапазон рабочих температур от –40 до +50 °С.
  • сечение жил в клеммах — до 25 кв. мм.

Дополнительные устройства

Наличие в номенклатуре производителя дополнительных устройств позволяет реализовать некоторые функции. Например. если нужно обеспечить отключение автомата по сигналу пожарной сигнализации, применяют автомат в сцепке с независимым расцепителем РН47.

Кроме РН47, к автомату ВА47-29 ИЭК выпускает: контакты состояния КС47, КСВ47 и расцепитель минимального напряжения РМ47. Их рассматривать не будем. Я упомянул о них, поскольку возможность укомплектовать автомат такими устройствами влияет на выбор.

Время отключения автомата

Согласно 1.7.79 ПУЭ автомат должен отключить защищаемую цепь за 0,4 с при 220 В (1 фаза) или 0,2 с при 380 в (3 фазы). Популярные модульные автоматы ИЭК ВА47-29 обеспечивают время отключения при сверхтоках менее 0,1 с. Т.е. полностью удовлетворяют требованию п. 1.7.79 пуэ. Конечно, при условии, что при кз ток достигнет величины 5-10 номинальных токов. А это бывает не всегда.

Как ток короткого замыкания влияет на защиту автоматом

Предположим, что автомат с характеристикой С16 защищает электроприборы. В случае, если ток короткого замыкания не превысит 160А для холодного состояния автомата или 80А для нагретого, расцепитель сверхтоков не сработает. Будет работать тепловой расцепитель, который отключит защищаемую цепь через десятки-сотни секунд. Этого времени может оказаться достаточно, чтобы защищаемый электроприбор или кабель воспламенился.
Поэтому при проектировании рассчитывают ткз и проверяют срабатывание автоматов. При эксплуатации электроустановки можно замерить ткз на конце кабеля, который нужно защищать. Зная эту цифру, подобрать эффективное решение по защите.

Выбор автоматического выключателя для защиты вновь подключаемого оборудования — пример №1

Пусть мне нужно защитить автоматом группу из 7 светильников мощностью 20 Вт, напряжением 220 В. В первую очередь я сосчитаю суммарную мощность группы 7*20=140 Вт. Во вторую — определю ток 140 Вт/220 В=0,64 А. Фактором мощности светильников и кпд пускорегулирующей аппаратуры пренебрегу. Из популярных номиналов автоматов к полученному току 0,64 А ближе всего номинал 6А.

А для защиты светильников рекомендуется применять автоматы с характеристикой расцепителя В. Выбираю автомат популярной марки ВА47-29 В6А. При отсутствии в зоне досягаемости В6А приобрету С6А.
Для электропитания светильников применяю кабель ВВГнг-ls 3х1,5, который легко войдет в клеммы ВА47-29, рассчитанные на сечение жил до 25 кв. мм.
По условиям эксплуатации автомат ВА47-29 также меня устроит. Он должен применяться в диапазоне температур -40+50 градусов Цельсия. И имеет группу защиты IP20. Размещаю его в сухом щите внутри помещения.

Выбор автоматического выключателя для защиты вновь подключаемого оборудования — пример №2

Пусть мне нужно защитить автоматом группу из 6 розеток напряжением 220 В. Я составлю список нагрузок, где будут: пылесос 1 квт, электродрель 700 вт, торшер 100 Вт, зарядка для мобильника 20 вт, телевизор 150 вт. В первую очередь я сосчитаю суммарную мощность группы 1+0,7+0,1+0,02+0,15=1,97 кВт. Во вторую — определю ток 1970 Вт/220 В=8,95 А. Фактором мощности перечисленных приборов пренебрегу. Из популярных номиналов автоматов к полученному току 8,95 А ближе всего номинал 10А.

Однако я выберу популярный номинал 16А, который даст возможность подключать оборудование с суммарной мощностью 3,52 кВа. Для защиты электромоторов с небольшим пусковым током рекомендуется применять автоматы с характеристикой расцепителя С. Выбираю автомат популярной марки ВА47-29 С16А. Поскольку среди подключаемых приборов есть переносные — электродрель, пылесос, дополнительно к автомату применю узо.

Блокнот проектировщика
(электрика и связь)

Во многих сильноточных электроустановках остро стоит проблема оперативного отключения силовых цепей, особенно при возникновении аварийных ситуаций, и последующей подачи питания на силовые цепи. Причем потребитель настаивает на автоматической работе установки. Казалось бы, какие проблемы, бери контактор, ставь контролирующую аппаратуру – и дело в шляпе! Не тут-то было: это справедливо на токах менее 800 А! А свыше 800 А это решение не подойдет – контакторов на такие токи на напряжение до 1000 В пока не выпускают.

Справедливости ради надо отметить, что некоторые европейские производители берутся за производство контакторов такой мощности, но только под заказ, по весьма немалой цене, да и сроки поставки получаются очень долгими. Что делать в такой ситуации? Вариантов несколько. Первый вроде бы очевиден – использовать высоковольтное оборудование, т.е. то, которое применяют на силовых подстанциях для напряжений на 6 кВ, так называемые вакуумные коммутаторы. Но это очень дорого, да и не слишком оправдано. Второй – применить так называемые автоматические выключатели в литом корпусе, оборудованные электромагнитным приводом. Как еще один вариант можно использовать и применение воздушных автоматических выключателей, но это решение по стоимости сравнимо с первым вариантом.

Наиболее предпочтителен вариант применения автоматического выключателя в литом корпусе, оборудованного электромагнитным приводом. Один из вариантов применения – использование его в качестве контактора. Конструктивно сборка из контактора и привода мало напоминает контактор, да и принцип действия (включения и отключения) иной, но функцию подачи питания и отключения при подаче внешнего сигнала это устройство выполнит. Есть только одно принципиальное отличие, которое значительно усложняет жизнь проектировщику: для включения контактора достаточно подать питание на управляющую катушку, и контактор замкнется, для отключения – достаточно отключить управляющую катушку от источника питания, и коммутируемая цепь будет разорвана. То есть для управления контактором достаточно одной управляющей линии. Это обусловлено тем, что у контактора одно из двух устойчивых состояний (замкнуто/разомкнуто) определяется обязательным наличием управляющего напряжения на катушке, а у автоматического выключателя не два состояния, а три! Состояния автоматического выключателя – «ВЫКЛЮЧЕН», «АВАРИЯ», «ВКЛЮЧЕН». В случае срабатывания при возникновении аварии ручка управления переключается в среднее положение «АВАРИЯ». При этом после аварии выключатель обязательно должен быть переведен сначала в положение «ВЫКЛЮЧЕН» для сброса аварии, и только после этого его можно перевести в положение «ВКЛЮЧЕНО». Собственно, это и определяет сложность дистанционного управления автоматическим выключателем.

Читать еще:  Назначение главного воздушного выключателя

В этой статье мы попытаемся предложить нестандартный подход к проблеме «сильноточного» АВР (автоматический ввод резерва) на токи до 1600 А.

Обычно АВР реализуется на двух реверсивных контакторах (между ними устанавливается механическая блокировка, предотвращающая одновременное включение) и схемой слежения за линиями питания. В случае распределения нагрузки на две линии добавляют так называемый секционный контактор, который реализует функцию питания двух нагрузок от одной линии в случае отказа одной из линий. Также присутствуют цепи защиты от перегрузки и короткого замыкания. Реализуются схемы управления и защиты АВР либо на дискретных элементах релейной логики, либо на микропроцессорных специализированных моноблочных устройствах управления. Но суть в том, что во всех вариантах исполнения на каждый из контакторов идет только одна управляющая линия, что подразумевает в качестве исполнительного механизма контактор. Требуется коммутировать ток, например 1500А – и сюда сразу просится ВА88-43, оборудованный независимым расцепителем и электроприводом! Но напрямую произвести замену не получится. Придется дорабатывать схему и вводить дополнительные элементы.

Для начала все же хотелось бы напомнить принцип работы и схему включения электропривода. Ведь проблема не только в том, что необходимо заменить контактор автоматом с приводом. Дело в том, что привода для разных автоматических выключателей работают на разных принципах, и схемы управления у них также будут отличаться.

Для начала вспомним ручные (кнопочные) схемы управления приводами.

В ассортименте ТМ IEK четыре привода (можно сказать, что по факту их три, так как ЭП40 и ЭП43 по своему устройству одинаковы, а отличаются только местом установки). Основная проблема – отличия в схеме подключения, которые обусловлены принципом работы разных приводов. Принцип работы обусловлен необходимым усилием для перевода автоматического выключателя из одного состояния в другое. Так, для автоматического выключателя ВА88-32 достаточно усилия небольших электромагнитов, тогда как для взведения пружин взвода ВА88-43 требуется значительное усилие, реализуемое при помощи электромотора (см. табл. 1).

Таблица 1. Рекомендуемые паспортные схемы включения приводов для случая кнопочного управления

Варианты полного дистанционного управления для всех моделей приводов TM IEK.

Существует еще проблема, обусловленная особенностью работы собственно автоматического выключателя. При его отключении посредством подачи сигнала на независимый расцепитель (обычно так и производится размыкание по внешнему сигналу) выключатель переводится в среднее «АВАРИЙНОЕ» положение, из которого в замкнутое состояние «ВКЛЮЧЕНО» его снова можно перевести, только переведя сначала в положение «ВЫКЛЮЧЕНО».

При рассмотрении типовых схем включения приводов становится понятно, что на самом деле реально для целей АВР стоит использовать только ВА88-43, но ведь есть другие варианты дистанционного включения-отключения. Так что нужно рассматривать варианты полного дистанционного управления для всех моделей приводов.

Электропривод ЭП32/33 – это привод для ВА88-32/33. У него наименьший габарит, так что и усилие наименьшее. Для реализации дистанционного управления достаточно заменить кнопки ручного управления одним переключающим контактом реле. Линию «Откл» подключаем к нормально замкнутому выводу контакта, а «Вкл» — к нормально-разомкнутому выводу. При включении реле контакт замыкается, сигнал подается на вывод «Вкл» и ВА88-32 включается. Соответственно, сняв питание с реле, мы инициируем перевод контактора в положение «ВЫКЛЮЧЕН». То есть, получаем более чем полный аналог пускателя с одним дополнением: в случае срабатывания защиты ручка управления автоматического выключателя переходит в положение «АВАРИЯ», и после устранения аварии необходимо сначала перевести автоматический выключатель в положение «ВЫКЛЮЧЕН» и только после этого в положение «ВКЛЮЧЕН».

Для ЭП40 и ЭП43 при реализации автоматического управления будет достаточно решения, приведенного для приводов ЭП32/33. Отличие будет в том, что ЭП32/33 срабатывает мгновенно, а у ЭП40 и ЭП43, в связи с отличием конструкции, процесс сброса и взведения пружины занимает несколько секунд. Это необходимо учитывать при проектировании алгоритмов.

Самая непростая, на первый взгляд, задача – осуществить управление при помощи ЭП35/37. Но на самом деле здесь тоже нет ничего сложного. Те же реле, но с двумя перекидными контактами взамен кнопок. Плюс, так же как и у ЭП40 и ЭП43 – обязательно учитывать время перевода рукоятки управления.

Вроде бы все здорово, все включается и отключается. Осталось лишь маленькое «но»! При возникновении аварийной ситуации, требующей мгновенного отключения потребителей, привод не сможет выполнить поставленную задачу как контактор: время срабатывания определяется временем движения механизма переведения рукоятки управления автоматического выключателя. Как быть? В зависимости от задачи воспользуемся независимым или минимальным расцепителем (при применении независимого расцепителя отключение произойдет при появлении напряжения на обмотке электромагнита, тогда как у минимального – при снижении напряжения ниже заданного уровня). Состояние автоматического выключателя можно контролировать при помощи дополнительных или аварийных контактов (см. рис. 1).

Работа схемы:

Начальное состояние – выключено, как на схеме. Для замыкания контактов автоматического выключателя необходимо подать разрешающее напряжение на минимальный расцепитель и, по истечении пяти секунд – на катушку реле КО. Отключающее действие минимального расцепителя будет нейтрализовано, а контакты реле подадут питание на электромагнит высвобождения пружины взвода. Цепь замкнулась. Для размыкания достаточно снять напряжение с любой из цепей управления. При снятии питания с реле произойдет перевод в положение «ВЫКЛЮЧЕН». При снятии питания с минимального расцепителя произойдет размыкание с переходом рукоятки управления в среднее положение – «АВАРИЯ». В этом случае для продолжения работы необходимо обесточить реле, после чего произойдет перевод автоматического выключателя в положение «ВЫКЛЮЧЕН». После этого можно вновь замкнуть контакты автоматического выключателя, переключив контакт реле.

Владимир Селиверстов
Вестник ИЭК. октябрь 2008

Почему срабатывают автоматические выключатели

Основные неисправности автоматических выключателей, их причины возникновения и способы устранения. Что делать, если автомат не включается или выбивает.

Если в квартире погас свет, отключились розетки, или перестала работать электроплита, то любой мало-мальски знакомый с электротехникой человек идет на площадку проверять в электрощите состояние автоматических выключателей. Чаще всего, устранение неисправности сводится к повторному включению автомата.

Читать еще:  Автоматический выключатель ba57 35

Факт срабатывания современного модульного автоматического выключателя определяется легко: ручка находится в положении «вниз», на ней отчетливо виден круглый знак – «ноль». Для включения достаточно повернуть эту ручку вверх, тогда появится горизонтальная черта, и можно будет считать, что миссия выполнена.

Многие квартиры на постсоветском пространстве оборудованы щитками с автоматами немного другого образца. Автоматические выключатели серии АЕ и им подобные имеют немного большие габариты, крепятся к основанию длинными винтами и обладают неприятным свойством: при срабатывании их ручка остается в прежнем, верхнем положении. Это затрудняет поиск сработавшего автомата, который необходимо выключить и снова включить, чтобы вновь подать напряжение.

Но все это, по большому счету, мелочи. Сработавший автомат говорит о какой-то неисправности, а нам надо разобраться, о какой именно.

Расцепители автоматических выключателей

Для начала надо выяснить хотя бы в общих чертах, что такое автоматический выключатель, и как он работает. Многим известно, что автомат разрывает «фазу». Многополюсный автомат может разрывать и нулевой рабочий проводник. Но разрывать цепь автомат может не только по желанию владельца, поворачивающего ручку вниз. На то это и «автоматический» выключатель, что выключиться он может и автоматически.

Необходимо это для того, чтобы защитить проводники и квартирное электрооборудование от повышенного электрического тока, способного вызвать пожар и разрушения. Причиной же возрастания тока может стать:

1. Перегрузка сети. Ее может вызвать включение неисправных электроприемников, или электроприемников, суммарная мощность которых превышает возможности сети. Последнее может быть связано и с неправильной электрической разводкой по квартире, когда на одну группу приходится большое количество штепсельных розеток. Каждая розетка в отдельности вполне может быть и не перегружена, но суммарный их ток может достигать недопустимых для одного автомата значений.

Для защиты от токов перегрузки в автоматических выключателях применяется тепловой расцепитель – биметаллический контакт, состояние которого зависит от температуры, которая, в свою очередь, зависит от протекающего электрического тока. Уставку, то есть, ток срабатывания теплового расцепителя обычно можно регулировать в небольших пределах.

2. Короткое замыкание в сети. Оно может быть вызвано неисправностью электропроводки или выходом из строя какого-либо электроприемника. Для новой электропроводки короткое замыкание может стать результатом ошибки в монтаже, например, при соединении проводов в ответвительной коробке. Физически короткое замыкание – это электрическое соединение фазного и нулевого проводника помимо нагрузки. Поскольку сопротивление цепи в этом случае ограничивается только сопротивлением проводов, то электрический ток мгновенно достигает очень большого значения.

Для защиты от сверхтоков короткого замыкания тепловой расцепитель автомата неэффективен: пока нагреется и разорвется биметаллический контакт, провода уже практически наверняка будут повреждены, а электрическая дуга вызовет возгорание. Поэтому в модульных автоматических выключателях всегда применяетсяэлектромагнитный расцепитель, скорость срабатывания которого составляет доли секунды с момента возрастания тока.

Итак, если в вашем квартирном щитке сработал автоматический выключатель, то можно, конечно, включить его вновь. Однако систематическое срабатывание говорит о какой-то проблеме, которую придется решать.

Короткое замыкание в цепи розеток

При мгновенном срабатывании автомата после его включения есть все основания полагать, что мы имеем дело с коротким замыканием – тепловой расцепитель так быстро не сработает. Убедиться в наличии замыкания можно при помощи мультиметра – сопротивление между нулевой рабочей шиной N и выводом автоматического выключателя при коротком замыкании должно быть близко к нулю. Разумеется, проводить подобные измерения можно, только при выключенном автомате.

Коль скоро мы убедились, что причина срабатывания – короткое замыкание, то необходимо выяснить, где именно оно произошло. Автоматические выключатели в щитке должны быть подобраны в соответствии с принципами селективности, а это значит, что сработать должен именно автомат, расположенный ближе всего к месту короткого замыкания. При этом выключатель реагирует только на замыкания в той части цепи, которая расположена после него относительно линии.

Поэтому, скажем, если срабатывает только вводной автоматический выключатель, то место замыкания с большой долей вероятности расположено прямо во вводном щите. При замыкании в пределах квартиры срабатывает групповой выключатель и зачастую вместе с ним – вводной автомат. В этом случае вводной аппарат можно смело включить вновь и выяснить, какая именно группа электроприемников подключена к проблемному проводу – эта группа не будет работать.

Выяснив этот вопрос, можно отключить все эти электроприемники и вновь ввести групповой автомат в работу. Если он не сработал, то причина состоит в неисправности одного из отключенных электроприборов. Найти конкретного виновника можно либо поочередным включением всех электроприемников, либо измерением их входного сопротивления. Второй способ не подходит для приборов, имеющих электронное управление. Неисправный прибор, разумеется, подлежит ремонту.

Если все приборы исправны, необходимо приступить к осмотру розеток, входящих в состав группы: пластиковые корпуса разобрать, проверить и подтянуть клеммные зажимы. После розеток наступает черед коробок. Их придется вскрыть. И если осмотр не выявит явных неисправностей, то провода надо разъединить, чтобы проверить сопротивление между жилами кабелей по отдельности. Такая проверка уже точно позволит определить, в каком именно из кабелей имеется замыкание. Поврежденная линия подлежит замене, а жилы в коробке необходимо вновь соединить с применением сертифицированных зажимов.

Короткое замыкание в цепи освещения

Если срабатывающий автоматический выключатель защищает цепи освещения, то проверку можно начать с введения автомата при выключенных выключателях. Не сработал автомат – можно поочередно щелкать выключателями для того, чтобы выяснить, в цепи какого именно из них имеется короткое замыкание. Таким образом сужаем область поиска до цепи группы светильников, вводимых с одного выключателя.

В этой группе следует тщательно осмотреть каждый светильник, выкрутив лампы и рассмотрев клеммные зажимы. Мультиметром можно измерить сопротивление между фазным и нулевым проводом со стороны каждого светильника. При этом можно определить светильник или кабельную линию, в которой произошло замыкание.

Если же короткое замыкание выявляется на всех светильниках группы, или присутствует в сети вне зависимости от положения выключателя, то местом замыкания, скорее всего, является ответвительная коробка освещения. Ее необходимо вскрыть и проверить точно так же, как в случае с замыканием розеточной сети. Ну, а если и в коробке полный порядок, то прозваниваем отдельные кабельные линии, разъединив их концы.

Перезагрузка

Перегрузка сети — Как уже говорилось, в случае перегрузки сети по току автоматическому выключателю требуется некоторое время для срабатывания. Обычно речь идет о нескольких минутах. Поэтому если автомат вышибает время от времени, то очень может быть, что вы имеете дело именно с перегрузкой.

Читать еще:  Автоматический выключатель s203 минимакс

Перегрузка цепи освещения — явление достаточно редкое, и чтобы его избежать, используйте только лампы, подходящие по мощности к вашим светильникам, а модернизацию цепи освещения производите с учетом резерва по мощности. Ведь цепи освещения отдельных квартир часто бывают защищены одним автоматом на десять ампер. Этого часто бывает и достаточно, но при установке большого количества дополнительных светильников в щитке необходимо предусмотреть дополнительный автомат освещения для их питания, особенно, если светильники галогеновые или с обычными лампами накаливания.

Перегрузка розеточной сети — это совсем не редкость. Во время проектирования и монтажа электропроводки в доме невозможно точно определить нагрузку на каждую группу. Поэтому для удобства жильцов на группу, включаемую одним автоматическим выключателем, приходится по три-четыре розетки. И, несмотря на то, что номинал автоматического выключателя обычно подбирается по сечению питающей жилы и не превышает 25 ампер, номинальный ток розеток может составлять 16 ампер.

Здесь есть все предпосылки для перегрузки, если все мощные электроприемники, такие как чайник, утюг, микроволновая печь и тому подобное, включить в розетки одной группы. Тут уж, разумеется, сработает автоматический выключатель. И чтобы подобного не происходило, необходимо равномерно распределять мощную нагрузку между группами, а при отсутствии такой возможности – не включать в сеть одновременно несколько мощных электроприемников.

Случается, что неисправный электроприбор потребляет повышенный ток, который приводит к перегрузке сети и срабатыванию автоматического выключателя. Замерить ток в бытовых условиях не всегда возможно, но если срабатывание теплового расцепителя происходит только при включении какого-то одного электроприемника, а номинальная мощность этого прибора не превышает 2,5 кВт, то следует произвести его ревизию на предмет наличия неисправностей.

Неисправность автоматического выключателя — не так уж и редко причиной постоянного срабатывания автоматических выключателей является неисправность последних. Даже среди новых автоматов допускается некоторое количество бракованных экземпляров. Их неспособность держать уставку (а касается это, в основном, тепловых расцепителей) часто выявляется только в ходе эксплуатации.

Поэтому при систематическом срабатывании теплового расцепителя автомата, прежде чем приступать к радикальным методам решения проблемы, можно просто произвести пробную замену автомата на схожий по номиналу и характеристике.

В заключение

В статье мы умышленно обошли стороной моменты, когда срабатывание автомата вызвано повреждением линии в ходе ремонтных работ – это тема отдельного разговора. По той же причине мы не стали касаться ситуации, когда срабатывает дифференциальный автоматический выключатель.

Но напоследок хотелось бы напомнить, что самый популярный способ решения проблемы срабатывающего автомата – замена его на автомат большего номинала – не допустим категорически. Автоматические выключатели – это аппараты, обеспечивающие защиту от пожара и повреждений. Их номинал подбирается именно с целью обеспечения безопасности. Произвольно выбранный автомат не выполнит своих функций и не защитит от опасных режимов работы электрической сети.

Кривые срабатывания автоматических выключателей

Кривые срабатывания автоматических выключателей, они же время-токовые характеристики, показывают зависимость времени отключения автоматического выключателя от величины тока.

Конструкция автоматических выключателей

Автоматический выключатель состоит из двух расцепителей — теплового расцепителя и электромагнитного.

Тепловой расцепитель — это биметаллическая пластина. При протекании тока пластина нагревается и меняет свою форму (изгибается). Таким образом, при протекании тока, который превышает номинальный ток автомата, биметаллическая пластина изгибается настолько сильно, что происходит отключение автомата. Когда вы включаете автомат — взводится пружина и она фиксируется рычажком, который фиксирует автомат во включенном положении. Этот самый рычажок биметаллическая пластина и снимает.

Электромагнитный расцепитель предназначен для защиты от короткого замыкания. При коротком замыкании в кабеле протекает ток, который в несколько раз превышает номинальный ток автомата. Этот ток необходимо мгновенно отключить. Для это в механизме автомата используется электромагнит — катушка и сердечник. При протекании тока катушка втягивает сердечник, который нажимает на фиксирующий рычажок и, таким образом, приводит в действие механизм отключения.

Типы кривых срабатывания

Параметры автоматических выключателей и их кривых срабатывания (время-токовых характеристик) жестко определены межгосударственным стандартом ГОСТ IEC 60898 .

Рассмотрим эти кривые подробнее. Их построение выполняют по логорифмической шкале. По горизонтали (оси абсцисс) откладывают кратность значения номинального тока (отношения тока к номинальному току автоматического выключателя). По вертикали (оси ординат) откладывают время в секундах и минутах. Время-токовые характеристики можно разделить на две части: верхняя ниспадающая часть и нижняя вертикальная.

Верхняя часть кривой показывает процесс работы теплового расцепителя. Чем меньше превышение тока тока над номинальным током автомата, тем медленнее изгибается биметаллическая пластина и тем дольше она отключает автомат.

Нижняя часть показывает процесс работы электромагнитного расцепителя. Эта часть кривой срабатывания имеет закругление вблизи нуля — это время движения механических контактов при размыкании. Мгновенно это произойти не может, но время очень мало.

Стандартом предусмотрены три типа автоматов с различными характиристиками срабатывания, которые определяются по диапазону срабатывания электромагнитного расцепителя:

  • Характеристика B — 3-5•Iном;
  • Характеристика C — 5-10•Iном;
  • Характеристика D — 10-20•Iном.

Таким образом, для различных типов нагрузок выбирают автомат с соответствующей характеристикой. Для нагрузок с низкими пусковыми токами — с характеристикой «B». Для нагрузок с большими пусковыми токами (например, двигателей) — с характеристикой «D».

Испытания автоматических выключателей

Стандартом предусмотрены следующие испытания:

  1. Начальное состояние автомата — «холодное», т.е. через него перед этим не пропускался ток. Через автомат пропускают ток 1.13•Iном.
  2. Начальное состояние автомата — сразу после испытания «a». Через автомат пропускают ток 1.45•Iном.
  3. Начальное состояние автомата — «холодное». Через автомат пропускают ток 2.55•Iном.
  4. Начальное состояние автомата — «холодное». Через автомат пропускают ток нижней границы диапазона характеристики (3•Iном для «B», 5•Iном для «C»).
  5. Начальное состояние автомата — «холодное». Через автомат пропускают ток верхней границы диапазона характеристики (5•Iном для «B», 10•Iном для «C»).

Результатом испытания «a» является отсутствие срабатывания автомата за время t>1час для автоматов с номинальным током Iном≤63A и t>2час для автоматов с Iном>63A.

Результатом испытания «b» является срабатывание автомата за время t 63A.

Результатом испытания «c» является срабатывание автомата в пределах 1с 32A.

Результатом испытания «d» является срабатывание автомата с характеристикой «B» в пределах 0,1с 32A; с характеристикой «C» в пределах 0,1с 32A.

Результатом испытания «e» является срабатывание автомата за время t гарантированно выполняются только в том случае, если ток короткого замыкания превышает верхнюю границу диапазона срабатывания, т.е. 5•Iном для характеристики «B», 10•Iном для характеристики «C», 20•Iном для характеристики «D». Эти величины кратности срабатывания следует использовать при проверке времени срабатывания автоматического выключателя при однофазном коротком замыкании.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector