Gc-helper.ru

ГК Хелпер
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Контактно дугогасительная система автоматического выключателя

Опишите принцип действия дугогасительных устройств, используемых в контакторах и автоматах. Укажите, в каких случаях применяются те или иные дугогасительные устройства.

Дугогасительная камера (дугогасительная решётка) — специальное устройство, применяющиеся в приспособлениях дугогашения в различных электрических коммутационных аппаратах для предотвращения горения и быстрого гашения электрической дуги.

Простейшая дугогасительная решётка, применяемая, к примеру, в секционных изоляторах может быть выполнена в виде двух пластин, расположенных под углом. Дуга, продвигаясь по пластинам, растягивается, охлаждается и гаснет.

Дугогасительная решётка выключателей представляет собой набор металлических (обычно стальных) штампованных прямоугольных пластин с V — образным вырезом, гальванически покрытых медью или хромом для улучшения электрической проводимости и защиты от коррозии, закрепленных параллельно или веерообразно на некотором расстоянии друг от друга между двумя держателями, изготовленными из диэлектрика (обычно электрокартона), или, в устройствах большой коммутируемой мощности в держателе из асбоцемента, причём дугогасительные пластины электрически изолированы друг от друга. В дугогасительные камеры мощных коммутационных устройств входят постоянные магниты или электромагниты, отталкивающие шнур плазмы электрической дуги от металлических контактов в дугогасительную камеру (так называемое «магнитное дутьё»).

Принцип действия дугогасительной решётки основан на том, что вблизи электродов имеется существенное падение напряжения (суммарное падение прикатодного и прианодного напряжений на одном контакте составляет 15 — 30 В ) в стволе дуги. Под действием собственного магнитного поля плазма дуги начинает двигаться по дугогасящим рогам коммутирующих контактов (движение дуги под собственным магнитным полем — это движение проводника с током, взаимодействующего с самопорождённым магнитным полем, так как газ в дуге сильно ионизирован и, в первом приближении, может рассматриваться как эластичный проводник с током. Движение проводника с током при взаимодействии с магнитным полем описывается законом Ампера). При этом плазма дуги втягивается в дугогасительную камеру и разбивается на ряд мелких дуг между пластинами, что эквивалентно ряду последовательных контактов, на каждом из которых происходит околоэлектродное падение напряжения.

Так как высокоионизированная плазма имеет очень высокую теплопроводность, обусловленную высокой концентрацией свободных электронов, то она охлаждается, отдавая часть тепла пластинам решётки, что влечёт деионизацию из-за рекомбинации ионов и последующее гашение дуги. Изготовление пластин дугогасительной решётки из ферромагнитного материала (обычно — стали) обусловлено главным образом не соображениями экономии цветных металлов, а облегчением вхождения дугового шнура в решётку: магнитное поле дуги стремится замкнуться по ферромагнитной массе, в результате чего возникают силы, втягивающие газ плазмы дуги в дугогасительную решётку. Дополнительное преимущество ферромагнитных дугогасительных пластин — электромагнитные силы не только втягивают дугу в решётку, но и исключают выход ионизированной плазмы с другой стороны дугогасительной системы.

Дугогасительная камера сконструирована таким образом, что электрическая дуга, образующаяся при размыкании контактов коммутационных аппаратов, втягивается в дугогасительную решётку, так как такое движение плазмы энергетически выгодно. Втянувшись в промежутки пластин камеры, электрическая дуга удлиняется, разбивается пластинами камеры на несколько более маленьких по длине дуг, при этом быстро деионизируется, охлаждается и гаснет. В дугогасительных камерах с магнитным дутьём, осуществляемым с помощью дополнительного магнитного поля, создаваемого с помощью постоянных магнитов или электромагнитов, плазма дуги эффективнее втягивается в дугогасительную камеру воздействием на неё магнитного поля, порождаемого этими магнитами, так как плазма из-за высокой электропроводности стремится вытолкнуться из магнитного поля, сохраняя поток магнитного поля внутри себя неизменным. Благоприятным дополнительным фактором взаимодействия с ферромагнитной решёткой, который влияет на движение ряда малых дуг (полученных при разбиении большой дуги) — это выравнивание их скоростей: вырвавшиеся вперёд дуги будут тормозиться, а отстающие — ускоряться, исключая выход их с внешней стороны решётки и втягивая дугу при малых токах в дуге.

Дугогасительные камеры применяются в автоматических воздушных выключателях, магнитных пускателях (начиная со второй величины), контакторах, электромагнитных выключателях, секционных изоляторах контактной сети, выключателях нагрузки и рубильниках, в конструкции некоторых из них предусмотрены дугогасящие устройства.

В автоматических выключателях нашли применение два исполнения дугогасительных устройств — полузакрытое и открытое.

В полузакрытом исполнении автоматический выключатель закрыт кожухом, имеющим отверстия для выхода горячих газов. Объем кожуха делается достаточно большим, чтобы избежать появления внутри кожуха больших избыточных давлений. При полузакрытом исполнении зона выброса горячих и ионизированных газов составляет обычно несколько сантиметров от выхлопных щелей. Такое конструктивное решение применяется в автоматических выключателях, монтируемых рядом с другими аппаратами, в распределительных устройствах, в автоматах с ручным управлением. Предельный ток автоматического выключателя не превышает 50 кА.

При токах 100 кА и выше в автоматических выключателях применяются камеры открытого исполнения с большой зоной выброса. Полузакрытое исполнение применяется, как правило, в установочных и универсальных автоматах, открытое — в быстродействующих и автоматах на большие предельные токи (100 кА и выше) или большие напряжения (выше 1000В).

В автоматических выключателях массового применения (установочных и универсальных) широкое применение получила деионная дугогасительная решетка из стальных пластин. Поскольку автоматические выключатели должны работать как на переменном, так и на постоянном токе, число пластин выбирается из условия отключения цепи постоянного тока. На каждую пару пластин должно приходиться напряжение менее 25 В.

В цепях переменного тока с напряжением 660 В такие дугогасительные устройства обеспечивают гашение дуги с током до 50 кА. На постоянном токе эти устройства работают при напряжении до 440 В и отключают токи до 55 кА. В дугогасительных устройствах со стальными пластинами гашение происходит спокойно, с минимальным выбросом ионизированных и нагретых газов из дугогасительного устройства.

При больших токах применяются лабиринтно-щелевые камеры и камеры с прямой продольной щелью. Втягивание дуги в щель осуществляется магнитным дутьем с катушкой тока.

Продольно-щелевая камера может иметь несколько параллельных щелей неизменного сечения. Это уменьшает аэродинамическое сопротивление камеры и облегчает вхождение дуги с большим током в щели. Вначале дуга разбивается на ряд параллельных волокон. Но затем из всех параллельных ветвей остается лишь одна, в которой окончательно происходит гашение. Стенки камеры и перегородки изготавливаются из асбоцемента.

В лабиринтно-щелевой камере постепенное вхождение дуги в зигзагообразную щель не создает высокого аэродинамического сопротивления при больших токах. Узкая щель повышает градиент напряжения в дуге, что сокращает необходимую длину дуги при гашении. Зигзагообразная форма щели уменьшает габариты автомата.

В лабиринтно-щелевой камере осуществляется интенсивное охлаждение дуги стенка-ми камеры. Ввиду того что дуга отдает большое количество тепла стенкам щели, материал камеры должен обладать высокой теплопроводностью и температурой плавления.

Для того чтобы не происходило разрушение камеры от высокой температуры, необходимо, чтобы дуга двигалась непрерывно с большой скоростью. Это требует создания мощного магнитного поля на всем пути движения дуги в щели. При недостаточной скорости движения происходит разрушение дугогасительного устройства.

Читать еще:  Выключатель автоматический sh201l ток номинальный 16а

В качестве материала для камеры применяется кордиерит. Газообразующие материалы типа фибры, органического стекла не применяются из-за повышения аэродинамического сопротивления.

В настоящее время с целью упрощения конструкции (отказ от мощных и сложных систем магнитного дутья) вновь возвращаются к идее деионной стальной решетки. Стальные пластины, имеющие паз для дугогасительных контактов создают усилие, перемещающее дугу. В отличие от обычной решетки дуга соприкасается с изолированными стальными пластинами: гашение происходит так же, как в камере с поперечными изоляционными перегородками, но при отсутствии специальной магнитной системы, двигающей дугу.

Токоведущая цепь и дугогасительная система автоматических выключателей

Классификация автоматических выключателей

Общие сведения

Автоматические выключатели

Применяются в сетях низкого напряжения. Автоматические выключатели предназначены для автоматического размыкания электрических цепей при коротких замыканиях, недопустимых перегрузках по току и нечастых коммутациях в нормальном режиме работы сети.

Основные узлы автоматических выключателей:

· привод автоматического выключателя;

· механизм свободного расцепления;

· элементы защиты – расцепители.

Основными параметрами автоматов являются:

· собственное и полное время отключения;

· предельная коммутационная способность ПКС (максимальное значение тока КЗ, которое выключатель способен включить или отключить несколько раз, оставаясь в исправном состоянии);

· одноразовая предельная коммутационная способность ОПКС (наибольшее значение тока, которое выключатель может отключить один раз);

· электродинамическая стойкость (максимальная амплитуда ударного тока КЗ, который способен пропустить выключатель);

· номинальный ток расцепителя.

Номинальные токи главных цепей выключателей, предназначенных для работы при температуре окружающего воздуха 40 °C, должны соответствовать ГОСТ 6827. Номинальные токи для главных цепей выключателя выбирают из ряда: 6,3; 10; 16; 20; 25; 32; 40; 63; 100; 160; 250; 400; 630; 1000; 1600; 2500; 4000; 6300 А. Дополнительно могут выпускаться выключатели на номинальные токи главных цепей выключателей: 1500; 3000; 3200 А.

Собственное время отключения – время от момента, когда ток достигает значения тока срабатывания до начала расхождения его контактов.

Полное время отключения – время от момента, когда ток достигает значения тока срабатывания до момента гашения дуги.

Автоматический выключатель может быть снабжен вспомогательными контактами для сигнализации срабатывания.

ГОСТ 9098-78 — устанавливает следующую классификацию автоматических выключателей.

1. По роду тока главной цепи:

· постоянного и переменного тока.

2. По числу полюсов главной цепи:

3. По наличию токоограничения:

· Токоограничивающие (ограничивают значение тока КЗ с помощью быстрого введения в цепь дополнительного сопротивления электрической дуги и последующего быстрого отключения КЗ, при это ток КЗ не достигает ожидаемого расчетного максимального значения);

· нетокоограничивающие (не ограничивают значение тока КЗ в цепи, и он достигает максимального ожидаемого значения).

4. По видам расцепителей:

· с максимальным расцепителем тока;

· с тепловым расцепителем

· с независимым расцепителем;

· с минимальным или нулевым расцепителем напряжения;

· с электронным расцепителем.

5. По характеристике выдержки времени максимальных расцепителей тока:

· без выдержки времени;

· с выдержкой времени, независимой от тока;

· с выдержкой времени, обратно зависимой от тока;

· с сочетанием указанных характеристик.

6. По наличию свободных контактов («блок-контактов» для вторичных цепей):

7. По способу присоединения внешних проводников:

· с задним присоединением;

· с передним присоединением;

· с комбинированным присоединением (верхние зажимы с задним присоединением, а нижние — с передним присоединением или наоборот);

· с универсальным присоединением (передним и задним).

8. По виду привода:

При номинальных токах до 200 А применяется одна пара контактов, которые могут быть облицованы металлокерамикой. При токах более 200 А применяются двухступенчатые контакты типа перекатывающегося контакта или пары главных и дугогасительных контактов. В автоматах на большие токи применяется несколько параллельных пар главных контактов.

В автоматических выключателях применяются полузакрытое и открытое исполнения дугогасительных устройств.

В полузакрытом исполнении автомат закрыт изоляционным кожухом, имеющим отверстия для вывода горячих газов (зона выброса – несколько сантиметров от выхлопных щелей). Обычно применяется деионная дугогасительная решетка из стальных пластин. Такой тип дугогасительного устройства обычно применяется в модульных автоматических выключателях. Предельный отключаемый ток таких автоматов не превышает 50 кА.

В автоматах на большие предельные токи применяются дугогасительные устройства открытого исполнения с большой зоной выбороса. Это как правило – лабиринтно-щелевые камеры и камеры с прямой продольной щелью.

Токоведущая цепь имеет главные 3 и дугогасительные 1 контакты. Включение автомата может производиться вручную рукояткой 12 или электромагнитом 4. Звенья 6,7 и упор 13 образуют механизм свободного расцепления. Отключение автомата может производиться рукояткой 12 или с помощью тепловых или электромагнитных расцепителей 5, 8, 10, 11. Необходимая скорость расхождения контактов обеспечивается пружиной 9. Гашение дуги происходит в камере 2.

|следующая лекция ==>
Высоковольтные предохранители|Расцепители автоматических выключателей

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Электрические аппараты — Токоведущая пепь и дугогасительная система автоматов

Зміст статті

  • Электрические аппараты
  • Контроллеры
  • Командоаппараты
  • Резисторы пусковых и пускорегулирующих реостатов
  • Реостаты
  • Контакторы и магнитные пускатели
  • Контакторы постоянного тока
  • Контакторы переменного тока
  • Магнитные пускатели
  • Тиристорный пускатель
  • Выбор контакторов и пускателей
  • Электромагнитные и тепловые реле
  • Электромагнитные реле тока и напряжения
  • Конструкция электромагнитных реле тока и напряжения
  • Поляризованные реле
  • Тепловые реле
  • Позисторная защита двигателей
  • Электромеханические реле времени
  • Реле времени с механическим замедлением
  • Герконовые реле
  • Основные соотношения параметров герконового реле
  • Конструкция герконовых реле
  • Управление герконом с помощью постоянного магнита
  • Герконовые реле с памятью
  • Герконы с большой коммутационной способностью
  • Преимущества и недостатки герконов
  • Применение оптоэлектронных приборов
  • Электромагнитные муфты управления
  • Электромагнитные фрикционные муфты
  • Электромагнитные ферропорошковые муфты
  • Гистерезисные муфты
  • Рубильники и переключатели
  • Конструкция рубильников и переключателей
  • Предохранители
  • Нагрев плавкой вставки при коротком замыкании
  • Конструкция предохранителей низкого напряжения
  • Выбор предохранителей
  • Высоковольтные предохранители
  • Автоматы
  • Токоведущая пепь и дугогасительная система автоматов
  • Приводы и механизмы универсальных автоматов
  • Расцепители автоматов
  • Универсальные и установочные автоматы
  • Быстродействующие автоматы
  • Автоматы для гашения магнитного поля мощных генераторов
  • Конструкция реакторов
  • Сдвоенные реакторы
  • Трансформаторы тока
  • Конструкция трансформаторов тока
  • Выбор трансформаторов тока
  • Трансформаторы напряжения
  • Конструкция трансформаторов напряжения
  • Емкостные делители напряжения
  • Список литературы

17.2. ТОКОВЕДУЩАЯ ЦЕПЬ И ДУГОГАСИТЕЛЬНАЯ СИСТЕМА АВТОМАТОВ

а) Токоведущая цепь. Наиболее важной частью токоведущей цепи автоматов являются контакты. При номинальных токах до 200 А применяется одна пара контактов, которые для увеличения дугостойкости могут быть облицованы металлокерамикой. При токах более 200 А применяются двухступенчатые контакты типа перекатывающегося контакта (рис. 3.15) или пары главных и дугогасительных контактов. Основные контакты облицовываются серебром либо металлокерамикой (серебро, никель, графит). Дугогаентельный неподвижный контакт покрывается металлокерамикой СВ-50 (серебро, вольфрам), подвижный — СН-29ГЗ. Применяется металлокерамика и других марок. Работа таких контактов рассмотрена в § 3.4. В автоматах на большие номинальные токи применяется несколько параллельных пар глазных контактов.
В быстродействующих автоматах с целью уменьшения собственного времени применяются исключительно торцевые контакты, имеющие малый провал. Контакты изготавливаются из меди, а поверхности касания подвергаются серебрению. В настоящее время проводятся работы по созданию искусственного жидкостного охлаждения контактов [3.2]. Такое решение позволяет сохранить малую массу и быстродействие автомата и увеличить длительный ток с 2,5 до 10 кА.
Устойчивость контактирования при включении на короткое замыкание зависит от скорости нарастания контактного нажатия. При амплитуде включаемого тока более 30—40 кА применяются автоматы моментного действия, у которых скорость движения контактов и контактное нажатие не зависят от скорости перемещения включающего механизма.
В универсальных автоматах, работающих селективно, создается определенная выдержка времени при протекании тока короткого замыкания, и размыкание контактов в течение этого времени недопустимо.
Во избежание приваривания контактов применяется электродинамическая компенсация. Один из вариантов такого компенсатора показан на рис. 17.1. При протекании тока в дугогасительной контуре на проводник АВ, несущий неподвижный дугогасительный контакт, действует электродинамическое усилие Рэд, увеличивающее нажатие контактов.
В установочных и быстродействующих автоматах, у которых при коротком замыкании отключение происходит без выдержки времени, электродинамическая компенсация не применяется, так как она ведет к увеличению собственного времени отключения.
б) Дугогасительная система. В автоматах применяются полузакрытое и открытое исполнения дугогасительных устройств. В полузакрытом исполнении автомат закрыт изоляционным кожухом, имеющим отверстия для выхода горячих газов. Объем кожуха достаточно велик для исключения внутри больших избыточных давлений. Зона выброса горячих и ионизированных газов составляет несколько сантиметров от выхлопных щелей. Такое исполнение применяется в установочных и универсальных автоматах, монтируемых рядом с другими аппаратами, в распределительных устройствах, автоматах с ручным управлением. Предельный отключаемый ток не превышает 50 кА.
В быстродействующих автоматах и автоматах на большие предельные токи (100 кА и выше) или большие напряжения (выше 1000 В) применяются дугогасительные устройства открытого исполнения с большой зоной выброса.
В установочных и универсальных автоматах массового применения широко используется деионная дугогасительная решетка из стальных пластин (§ 4.11). Поскольку эти автоматы предназначены как для переменного, так и для постоянного тока, число пластин выбирается из условия отключения цепи постоянного тока. На каждую пару пластин должно приходиться напряжение не более 25 В. В цепях переменного тока с напряжением 660 В такие дугогасительные устройства обеспечивают гашение дуги с током до 50 кА. На постоянном токе эти устройства работают при напряжении до 440 В и отключаемых токах до 55 кА. При этом дуга горит с минимальным выбросом ионизированных и нагретых газов из дугогасительного устройства.
При больших токах применяются лабиринтно-щелевые камеры и камеры с прямой продольной щелью. Втягивание дуги в щель осуществляется магнитным дутьем с катушкой тока. Продольно-щелевая камера может иметь несколько параллельных щелей неизменного сечения. Это уменьшает аэродинамическое сопротивление камеры и облегчает вхождение в нее дуги с большим током. Вначале дуга разбивается по щелям на ряд параллельных дуг. Но затем из всех параллельных дуг остается лишь одна. Гашение этой дуги завершает процесс отключения. Стенки камеры и перегородки изготавливаются из асбоцемента или керамики.
В лабиринтно-щелевой камере (см. рис. 4.24) постепенное вхождение дуги в зигзагообразную щель не создает высокого аэродинамического сопротивления при больших токах. Узкая щель повышает градиент напряжения в дуге, что сокращает необходимую ее длину при гашении. Зигзагообразная форма щели уменьшает габаритные размеры автомата. В такой камере дуга интенсивно охлаждается стенками. Поэтому материал камеры должен обладать высокими теплопроводностью и температурой плавления.
Для того чтобы камера не разрушалась под воздействием температуры, дуга должна двигаться непрерывно с большой скоростью. Это требует создания мощного магнитного поля на всем пути движения дуги в щели. При недостаточно высокой скорости движения дуги происходит разрушение дугогасительного устройства (§ 18.7). В качестве материала для камеры применяется керамика — кордиерит. Газообразующие материалы типа фибры и органического стекла не применяются из-за повышения аэродинамического сопротивления вхождению дуги в камеру.
В настоящее время с целью упрощения конструкции (отказ от мощных и сложных систем магнитного дутья) вновь возвращаются к использованию деионной стальной решетки. Стальные, изолированные керамикой пластины, имеющие паз для дугогасительных контактов, создают усилие, перемещающее дугу. Гашение дуги происходит так же, как в камере с поперечными изоляционными перегородками, но при отсутствии специальной системы магнитного дутья.

Читать еще:  Выключатели для электрических лебедок

Что такое контактор: назначение, принцип работы, виды, схемы подключения

При производстве электротехнических работ на высоковольтных линиях, при подключении мощных потребителей электрической энергии и промышленного оборудования электромонтажник неизбежно сталкивается с таким устройством, как контактор. У профессионала нет сомнений для чего нужен контактор и какие функции он выполняет, но человеку далекому от электротехники или только начинающему познавать электрическую специальность рано или поздно приходится столкнутся с этим понятием. Контактор – прибор очень удобный, но, чтобы понять для чего он нужен придется немного разобраться.

Что такое контактор и для чего он нужен

В электрических сетях постоянно приходится включать или выключать различные нагрузки или управлять их работой. Как мы знаем, в быту для этих целей существуют механические выключатели и рубильники. Но у таких устройств есть весьма ограниченный ресурс износостойкости, а для больших электрических систем, управление с помощью механических рубильников является неудобным и неэффективным способом. Именно поэтому был создан такой прибор, который имеет огромный ресурс работы, позволяет производить циклы включения и выключения до нескольких тысяч раз в час, а самое главное дает возможность управлять нагрузкой дистанционно. Простыми словами это выключатель.

Контактор – это электромагнитное устройство, предназначенное для частых включений и выключений электрических цепей дистанционным способом.

Электромагнитные контакторы применяются во всех сферах нашей жизни. Они включают уличное освещение, управляют отключением высоковольтных линий электропередачи, линий транспортных систем (трамвайных, троллейбусных, железнодорожных), широко применяются в строительстве и промышленности для запуска мощных силовых установок, двигателей, машин и другого оборудования.

Более того, такие коммутационные устройства применяются и в жилых домах для различных целей, таких, например, как включение электрообогревательных приборов или водонагревателей, для управления вентиляционными установками, водопроводными или канализационными насосами. Прогресс не стоит на месте и на данный момент системы умного дома под управлением контакторов или групп таких приборов уже постепенно входят в жизнь обычных людей.

Огромную роль эти устройства играют в электробезопасности и, как следствие, предотвращении пожаров от возгорания электрооборудования или силовых линий.

Данные приборы имеют ряд преимуществ перед различными модульными приспособлениями:

  • Могут подключаться к любой сети;
  • Имеют компактные размеры;
  • Абсолютно бесшумны в работе;
  • Могут использоваться при высоких мощностях и больших токах;
  • Легкие в эксплуатации и просты в монтаже;
  • Могут работать в любых условиях.

Устройство и принцип работы

Контактор – это двухпозиционный электромагнитный прибор, управление которым производится с помощью вспомогательной цепи электрического тока проходящего через катушки контактора. Во время прохождения электрического тока к сердечнику притягивается якорь, и группа контактов замыкается. В нормальном состоянии контакты в таком устройстве всегда разомкнуты – это важное правило для электробезопасности и удобства использования.

Читать еще:  Автоматические выключатели переменного тока abb

Если говорить простыми словами контактор – это выключатель при подаче напряжения на который его контакты замыкаются, и нагрузка включается, а при отсутствии напряжения на контакторе – он размыкает электрическую цепь.

Конструктивно этот электромагнитный выключатель состоит из системы блок-контактов, дугогасительной, контактной и электромагнитной систем.

Для тех, кто знаком с электрическими схемами и принципами работы выключателей данные схемы будут понятны. На катушку А1 – А2 подается вспомогательное напряжение, при этом для создания механического усилия и замыкания контактов втягивается соленоид и включает те контакты, которые необходимо. В зависимости от типа контактора и его конструкции он может включать как одну группу контактов, так и несколько одновременно или в определенной последовательности. Для того чтобы безопасно и быстро размыкать контактор в его конструкции присутствует пружина, посредством которой контакты, при отсутствии напряжения, мгновенно размыкаются.

Несмотря на то, что с виду этот прибор кажется очень сложным, а во многих случаях (при управлении силовыми линиями до 600В и токами до 1600А) большим по размерам в его конструкции все достаточно просто:

  • группа контактов, выполненная из высококачественной меди;
  • корпус из диэлектрических материалов;
  • соединенная с электромагнитом напрямую контактная планка;
  • электромагнитная катушка;
  • дугогасительные элементы, которые необходимы при управлении большими токами.

Управление контактором производится с помощью вспомогательной цепи, напряжение которой должно быть ниже величины напряжения рабочего тока и может соответствовать 24, 42, 110, 220 или 380 В.

Основные виды и типы контакторов

Для выполнения различных условий работы, задач и управления разными видами электрических систем и оборудования существуют контакторы с разнообразным функционалом.

По типу электрического тока коммутирующие устройства бывают:

  • постоянного тока – предназначенные для коммутации сетей постоянного тока;
  • переменного тока – работающие и выполняющие свою задачу в сетях переменного тока.

По типам конструкции эти механизмы различаются по количеству полюсов. Наиболее широко применяются однополюсные и двухполюсные устройства, реже – трехполюсные .

Трехполюсные приборы применяются в трехфазных электрических сетях переменного тока для управления мощными электродвигателями и прочими устройствами. В промышленности производят и используют многополюсные контакторы, но такие механизмы используются крайне редко и выполняют специфические задачи.

По наличию дополнительных систем:

  • без дугогасительной системы;
  • имеющие дугогасительную систему.

Наличие дугогасительной системы, о которой было сказано выше, не является обязательным конструктивом для сетей 220 В, но обязательно применяется в устройствах и в сетях с высоким напряжением (380 В, 600 В). Такая система гасит электрическую дугу, неизменно возникающую при высоком напряжении, при помощи поперечного электромагнитного поля в специальных камерах.

По типу управления контактором:

  • ручное (механическое) – оператор сам включает или отключает устройство;
  • с помощью слаботочной линии – коммутация происходит дистанционно;

По типу привода коммутирующие устройства бывают электромагнитные и пневматические . Самые распространенные и эффективные – механизмы, работающие с помощью электромагнитной индукции. Пневматические в основном применяются на железнодорожном транспорте (например, в локомотивах поездов), где есть системы сжатого воздуха.

По типу монтажа применяют бескорпусные и корпусные контакторы. Первые – монтируются в электрических щитах или внутри электроустановок и не защищены от попадания влаги и пыли, а вторые могут монтироваться в любом месте и очень часто имеют хорошую влаго-, пылезащиту.

Характеристики контакторов

Для выбора правильного устройства для своих нужд, необходимо знать, какие характеристики бывают у такого типа приборов и чем они отличаются. Как правило, электромагнитные контакторы имеют следующие важные характеристики:

  • Предельное и номинальное напряжение;
  • Соотношение работы с различными автоматическими выключателями (защищающие от короткого замыкания);
  • Параметры и типы регуляторов ускорений автоматических выключателей;
  • Характеристика и тип сопротивлений;
  • Тип и характер реле и расцепителей и других элементов в его составе.

В чём разница между контактором и магнитным пускателем

Очень часто контакторы путают с магнитными пускателями и это обоснованно, так как по сути это одно и то же. Данные типы устройств конструктивно выполнены практически идентично. Отличие же этих устройств в назначении: если контактор это моноблочный прибор, является выключателем и в основном служит для коммутации цепей, то электромагнитное реле (пускатель) в том числе выполняет защитную функцию, например, экстренно размыкая цепь при перегреве, и имеет в своем составе несколько контакторов, защитные устройства и управляющие элементы.

Существует такой вид коммутирующего устройства, как промежуточное реле – это прибор небольшой мощности, который служит для коммутации в слаботочных цепях и может выдержать намного больше циклов размыкания, чем контактор.

Схемы подключения контактора

Контакторы выпускаются многими производителями электротехнической продукции и имеют разные типы и исполнение. При подключении такого устройства важно строго руководствоваться рекомендациями завода-изготовителя и нормативной электротехнической документацией. В инструкции и на самом корпусе прибора в обязательном порядке будет располагаться схема подключения данного механизма и его главные характеристики. Разобраться в этой электрической схеме профессиональному электрику не составит никакого труда, а вот неспециалисту придется немного постараться.

Обратите внимание! Для работоспособности схемы используется нормально открытый контакт контактора для реализации самоподхвата расположенный параллельно пусковой кнопке.

Независимо от того каким-образом подключается контактор в системе обязательно используется два вида сети: силовая и сигнальная. Сигнальная линия запускает сам контактор, а он в свою очередь замыкает силовую линию.

При подключении к мощным асинхронным двигателям важно подключать последовательно с контактором тепловое реле, для защиты двигателя от перегрева и автомат для защиты от короткого замыкания.

Разобраться в назначении, конструкции и принципах работы данного сложного устройства оказалось совсем не сложно. Важно помнить, что правильно подключённый прибор – залог долгой и безопасной службы контактора. При подключении необходимо работать только при отключенном электропитании, помнить о мерах электробезопасности и общих правилах охраны труда, и строго их выполнять. А если что-то в работе или подключении этого прибора вам все же осталось непонятно, то лучшим вариантом будет обратиться к профессиональным электрикам для подключения данного устройства.

Что такое электромагнитное реле, их виды и принцип работы

Для чего нужен магнитный пускатель и как его подключить

Что такое твердотельное реле и для чего оно нужно?

Что такое частотный преобразователь, основные виды и какой принцип работы

Что такое сетевой фильтр, для чего он нужен и где применяется

Основные виды и принцип работы реле времени

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector