Gc-helper.ru

ГК Хелпер
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Масляный выключатель полный ход

Масляные выключатели. Типы, виды, устройство, работа маслянных выключателей.

Масляные выключатели — одни из первых коммутационных аппаратов в электроустановках высокого напряжения, применяются с конца прошлого столетия, не потеряли своего значения и широко используются в настоящее время. В СССР это основной вид выключателей на 6—220 кВ.

Различают выключатели масляные баковые — с большим объемом масла, масло служит и как дугогасящая среда, и как изоляция, и выключатели маломасляные — с малым объемом масла, масло служит только дугогасящей средой.

На напряжения 35-220 кВ применяются в основном баковые выключатели. Маломасляные выключатели являются основными на напряжение до 10 кВ. И это положение сохранится надолго, особенно если будут повышены их номинальные токи до 4 кА, а отключаемый ток — до 40— 50 кА. Начинают все более широко применяться маломасляные выключатели в наружных установках на 110 и 220 кВ при условии их достаточной отключающей способности (серия ВМТ).

Достоинства масляных выключателей — относительная простота конструкции, большая отключающая способность и независимость от атмосферных явлений. Недостатком, особенно баковых выключателей, является наличие большого количества масла, что приводит к большим габаритам и массам как самих выключателей, так и распределительных устройств, повышенной пожаро- и взрывоопасности, необходимости специального масляного хозяйства.

Риунок 1-1. Полюс масляного бакового выключателя на 220 кВ

1 — бак; 2 — дугогасительная камера; с неподвижными контактами и шунтирующим резистором; 3 — изоляция бака; 4 — ввод; 5 — приводной механизм;6 — трансформатор тока; 7 — направляющее устройство; 8 — шунтирующий резистор; 9 — изоляционная тяга; 10 -траверса с подвижными контактами;II — положение траверсы после отключения

Выключатели масляные баковые. Эти выключатели на напряжение до 20 кВ и относительно малые токи отключения выполняются большей частью однобаковыми (три полюса в одном баке), на напряжение 35 кВ и выше — трехбаковыми (каждая фаза в отдельном баке) с общим или индивидуальными приводами. Выключатели могут снабжаться электромагнитными или пневматическими приводами и работают с автоматическим повторным включением (АПВ).

Основой конструкции выключателя (рис. 1-1) является бак цилиндрической или эллипсоидальной формы, внутри которого и на нем монтируются контактная и дугогасительные системы, вводы и привод. Бак заливается до определенного уровня трансформаторным маслом. Между поверхностью масла и крышкой бака должен остаться некоторый свободный объем (обычно 20 — 30 % объема бака) — воздушная буферная подушка, сообщающаяся с окружающим пространством через газоотводную трубку. Воздушная подушка снижает давление, передаваемое на стенки бака при отключении, исключает выброс масла из бака и предохраняет выключатель от взрыва при чрезмерном давлении.

Высота уровня масла над местом разрыва контактов должна быть такой, чтобы исключить выброс в воздушную подушку горячих газов, выделяющихся при отключении вследствие разложения масла. Прорыв этих газов может при определенных их соотношениях привести к образованию взрывчатой смеси (гремучего газа) и взрыву выключателя. Высота уровня масла над местом разрыва контактов определяется номинальными напряжениями и током отключения и может составлять от 300—600 мм в выключателях на напряжение 6—10 кВ и до 2500 мм в выключателях на напряжение 220 кВ.

При напряжениях 3—6 кВ и малых отключаемых токах применяется простой разрыв в масле. При напряжениях 10, 35 кВ и выше в зависимости от значений напряжения и отключаемого тока используются как простые, так и более сложные дугогасительные устройства с продольным, поперечным, продольно-поперечным дутьем, с одно- и многократным разрывом.

Пример дугогасительной камеры с промежуточным контактом и продольным дутьем, применяемой в выключателях на 110 и 220 кВ, приведен на рис. 9-2. При отключении сначала размыкаются контакты 2 и 1, а затем контакты 1 и 8. Дуга между контактами 2 и 1 (генерирующая) создает повышенное давление в верхней полукамере. Газопаровая смесь и частички масла устремляются в сообщающийся с объемом бака полый контакт 8, создавая интенсивное продольное дутье и гася дугу. При отключении больших токов давление в камере к моменту расхождения контактов 1 и 8 достигает 4-5 МПа. После отключения камера заполняется свежим маслом через нижнее отверстие полукамеры 7.

Масляные баковые выключатели на напряжение 35 кВ и выше имеют встроенные трансформаторы тока. На внутреннюю часть проходного изолятора надеты, и укреплены под крышкой выключателя сердечники со вторичными обмотками (один или два на изолятор). Токоведущий стержень проходного изолятора служит первичной обмоткой. Выключатели на напряжение 110 кВ и выше могут иметь емкостные трансформаторы напряжения, для выполнения которых используются обкладки маслонаполненных вводов конденсаторного типа, и трансформаторы напряжения с индуктивной катушкой.

Выключателя маломасляные. В отличие от масляных баковых выключателей масло служит здесь только дугогасящей средой, а изоляция токоведущих частей и дугогасительного устройства относительно земли осуществляется с помощью твердых изоляционных материалов (керамика, текстолит, эпоксидные смолы и т.п.). Диаметры цилиндров у этих выключателей значительно меньше по сравнению с диаметрами баков масляных баковых выключателей, соответственно намного меньше объем и масса заливаемого в цилиндры масла. Меньшая, чем у бакового выключателя, прочность корпуса по отношению к давлениям, создаваемым при отключении предельных токов короткого замыкания, ограничивает отключающую способность маломасляного выключателя.

Рис. 1-2. Дугогасительная камера с промежуточным контактом и продольным дутьем.

1—промежуточный контакт с пружиной; 2— неподвижный контакт с пружиной; 3 — верхняя полукамера, металлическая; 4 — детали соединения с токоподводящим стержнем; 5 — гибкая связь; б — перегородка; 7 — нижняя полукамера, изоляционная; 8 — подвижный контакт.

Маломасляные выключатели имеют существенно меньшие габариты и массу, меньшую взрыво- и пожароопасность и требуют меньших и более дешевых распределительных устройств по сравнению с масляными баковыми выключателями. Наличие в маломасляных выключателях встроенных трансформаторов тока и емкостных трансформаторов напряжения значительно усложняет конструкцию выключателей и увеличивает их габариты, поэтому маломасляные выключатели выполняются без органической связи с такими трансформаторами.

Выключатели по компоновке выполняются с дугогасительными камерами внизу (ход подвижного контакта сверху вниз) и с камерами, расположенными сверху (ход подвижного контакта снизу вверх). Последние более перспективны в отношении повышения отключающей способности. Применяются выключатели для внутренней установки как распределительные и генераторные и для внешней установки как распределительные и подстанционные.

На рис. 1-3 приведен общий вид выключателя типа ВМПЭ-10 на 10 кВ и токи 630, 1000, 1600 А (в зависимости от сечения токопровода и контактов), номинальный ток отключения 20 и 31,5 кА, время отключения выключателя с приводом 0,12 с, время горения дуги при номинальных токах отключения не более, 0,02 с. Выключатель смонтирован на сварной раме 3. Внутри рамы расположен приводной механизм, который передает движение от привода к подвижным контактам и состоит из приводного вала 5 с рычагами, изоляционной тяги 4, отключающих пружин, масляного б и пружинного демпферов. К раме с помощью изоляторов 2 подвешены три полюса 1 выключателя.

Каждый полюс (рис. 1-4) состоит из прочного влагостойкого изоляционного цилиндра 5, армированного на концах металлическими фланцами 3 и 6. На верхнем фланце укреплен корпус 9 из алюминиевого сплава. Внутри корпуса расположены приводной механизм 13 и подвижная контакт-деталь 14 с роликовым токосъемным устройством с роликовым токосъемным устройством 8 и маслоуловителем 12. Корпус закрывается крышкой 10, имеющей отверстие для выхода газов и пробку 11 маслоналивного отверстия.

Рис. 1-3. Выключатель маломасленый на 10 кВ для внутренней установки (тип ВМПЭ-10) – общий вид.

Рис. 1-4. Полюс выключателя, изображенного на рисунке 1-3.

Нижний фланец закрывается крышкой 1, внутри которой расположена неподвижная розеточная контакт-деталь 2, над которой установлена дугогасительная камера 4 поперечного масляного дутья. Снизу крышки помещена маслоспусковая пробка 16, на фланце установлен маслоуказатель 15.

Для повышения стойкости контактов к действию электрической дуги и увеличения срока их службы съемный наконечник подвижной контакт-детали и верхние торцы ламелей розеточного контакта облицованы дугостойкой металлокерамикой. Токоподвод осуществляется к нижней крышке и к верхней крышке или среднему выводу 7. Выключатель может иметь встроенные элементы защиты и управления, такие, как реле максимального тока мгновенного действия и с выдержкой времени, реле минимального напряжения, отключающие электромагниты, вспомогательные контакты и т. п.

Общий вид маломасляного генераторного выключателя приведен на рис. 1-5. Особенностью конструкций этих выключателей является токопровод, имеющий два параллельных контура: основной, контакты которого расположены открыто, и дугогасительный, контакты которого находятся в дугогасительных камерах внутри бака. На рис. 1-6 представлена функциональная электри ческая схема выключателя, изображенного на рис. 1-5. Основной контур образуют токоподвод 11, токоведущая шина 70, основные контакты 9, основная шина траверсы 8 и соответствующие позиции 9, 10 я 11 второго бака. Дугогасительный контур — основная шина 10, медные скобы 12, соединяющие основную шину с баком, стенки бака 3, неподвижный дугогасительный контакт 13, дуга (в момент отключения) 14, подвижный дугогасительный контакт 15 и соответствующие позиции 15, 14, 13, 3. 12, 10 второго бака. При включенном положении выключателя оба контура работают параллельно. Преобладающая часть тока проходит через основной контур, имеющий по сравнению с дугогасительным значительно меньшее сопротивление. При отключении сначала размыкаются основные контакты, дуга на них не возникает, весь ток переходит в дугогасительный контур. Затем размыкаются дугогасительные контакты, отключая цепь. Выключатели выполняются с двукратным разрывом на фазу, с камерами различной конструкции.

Рис. 1-5. Выключатель маломасляный генераторный (тип МГУ-20)

1—основание; 2 — опорный изолятор; 3, 5—бак; 4 — внутриполюсная перегородка; б — междуполюсная перегородка; 7 — газоотвод; 8 — траверса с шинами основного и дугогасительного контуров; 9-основные контакты; 10 — токоведущая шина; 11 — токоподвод

Рис. 1-6. Функциональная электрическая схема выключателя, изображенного на рис. 1-5:

а—включенное положение; б—момент отключения

Рис. 1-7. Выключатель маломасляный колонковый для внешней установки

1 — основание; 2 и 9 — неподвижные контакты; 3 — опорная изоляционная колодка; 4 — роликовый токоподвод; 5 — фарфоровая рубашка; 6 — подвижный контакт; 7 — дугогасительное устройство; 8 — промежуточный контакт; 10 — изоляционный цилиндр

Для увеличения номинального тока применяется искусственный обдув контактной системы и подводящих шин. В последние годы находит применение жидкостное (водяное) охлаждение контактов и шин.

Выключатель маломасляный для внешней установки (распределительный, подстанционный) показан на рис. 1-7. Выключатель состоит из трех основных частей:

гасительных устройств, помещенных в фарфоровые рубашки; фарфоровых опорных колонок и основания (рамы). Изоляционный цилиндр, охватывающий дугогасительное устройство, защищает фарфоровую рубашку от больших давлений, возникающих при отключении. Число разрывов на фазу может быть один, два и больше. Расположение камеры сверху более перспективно для повышения отключающей способности.

Испытания высоковольтных выключателей

Переменного тока

Масляные выключатели испытывают 1 раз в 3года бригадой из двух человек. В комплекс испытаний таких выключателей входят следующие операции, выполненные последовательно.

Измерение переходного сопротивления постоянному току контактов выключателей (во включенном положении) показывает их состояние без разборки масляного выключателя. Измерения можно производить с помощью микроом­метра ЦМ-1 или моста постоянного тока типа Р-333 по четырехзажимной схеме подключе­ния с сопротивлением соединительных зажимов не более 0,005 Ом. При измерениях следят за тем, чтобы потенциальные концы моста или микроомметра находились со стороны изме­ряемых контактов.

Полученные результаты сравнивают с паспортными. Например, у масляного выклю­чателя типа МКП-1 ЮМ предельное значение переходного сопротивления контактов дол­жно быть не менее 1400 мкОм, время замыкания контактов от подачи импульса — 0,5-0,6 с, а размыкания — 0,04-0,05 с.

Читать еще:  Прибор для измерения временной характеристики выключателя

Если переходное сопротивление между контактами выше нормы (это возможно при появлении окиси на них) и следует произвести несколько включений и отключений выклю­чателя. Если и это не помогает, то рекомендуется прогрузить его током 500-600 А от нагру­зочного или сварочного трансформатора, а затем снова замерить переходное сопротивле­ние. В случае отсутствия контакта собирают схему для пробоя образовавшейся пленки высоким напряжением, а затем прогружают большим током.

Сопротивление включающей катушки привода измеряют мостом Р-333 по четырех­зажимной схеме, а у отключающей — по двухзажимной. Результаты замеров сравнивают с паспортными.

Сопротивление изоляции включающей и отключающей кату­шек и вторичных цепей измеряют мегаомметром на 1000 В, и оно должно быть не менее 1 МОм.

Проверку времени движения подвижных частей выключателя производят при залитом в бак масле и при номинальном напряжении на зажимах катушек.

В эксплуатации допускается измерять время от подачи команды до момента замыка­ния или размыкания контактов. Время измеряют электромеханическим секундомером, еще

Рисунок 4.19. Схема измерения времени хода подвижных частей масляного выключателя: а— при включении; б- при отключении; КМ- контактор включения; YA-электромагнит; Q-масляный выключатель; РТ-секундомер; S-рубильник

большую точность дают электронные се­кундомеры. За истинное значение времени принимают среднее арифметическое значение трех-пяти замеров, которые срав­нивают с паспортным. Отклонения от пас­портных данных должны быть не более чем на ±10 %. Для

испытаний собирают схему (рис. 4.19).

Трансформаторное масло испытывают на пробой, содержание меха­нических примесей, взвешенного угля, во­дорастворимых кислот. Определяют кислотное число и тангенс угла диэлектрических потерь. У многообъемных выключателей любого напряжения и малообъемных выключателей напряжением 110 кВ и выше после отключения тока КЗ мощносностью больше половины паспортного значения разрывной мощнос- ти производят испытание масла на наличие взвешенного угля. У малообъемных выключателей напряжением до 35 кВ масло не испытывается; оно заменяется свежим при капи-

тальном ремонте, а также после трехкратных

отключений тока КЗ мощностью больше половины паспортного значения разрывной мощности.

Оценку состояния внутрибаковой изоляции масляных выключателей 35 кВ и их дугогасительных устройств производят по методике измерения tg d маслонаполненных вводов. Измерения производят по перевернутой схеме. При tg d боль­ше нормы из выключателя сливают масло или опускают бак, снимают или шунтируют дугогасительные устройства и снимают экраны, после чего повторно измеряют tg d. Если при этом величина tg d уменьшается на 4-5%, это свидетельствует об увлажненности изоля­ции выключателя и необходимости ее сушки. У выключателей напряжением 35 кВ, имею­щих повышенное значение tg d вводов, проверка внутрибаковой изоляции обязательна.

При испытании встроенных трансформаторов тока напряжением выше 1000 В сопротивление изоляции первичной обмотки проверяют мегаомметром на 2500 В, а изоляцию вторичной обмотки — мегаомметром на напряжение 500—1000 В. В обоих случаях сопротивление изоляции не нормируется, но при оценке состояния вторич­ной обмотки ориентируются на среднее значение сопротивления изоляции исправной об­мотки — не менее 10 МОм.

Кроме того, встроенные трансформаторы тока испытывают повышенным напряже­нием промышленной частоты, которое выбирается исходя из материала изоляции и класса напряжения. Время испытания трансформаторов с фарфоровой, жидкой или бумажно-мас­ляной изоляцией — 5 мин, а для изоляции из твердых органических материалов или кабель­ных масс — 1 мин.

Изоляцию доступных стяжных болтов и вторичных обмоток проверяют мегаоммет­ром на 2500 В.

Измерение сопротивления изоляции подвижных и направ­ляющих частей, выполненных из неорганического материала, производят при вскры­тии баков выключателей мегаомметром на напряжение 2500 В с помощью временных электро­дов, накладываемых на изоляцию в верхней и нижней частях бака. Перед измерением произво­дят проверку исправности мегаомметром. Сопротивление изоляции подвижных и направляющих частей должно быть

Рис. 4.20. Метод определения полного хода подвижного контакта и хода в розеточном контакте (выключатели серии ВМПЭ и т. п ): 1-штанга; 2-колодка; Б-включенное положение; В-момент касания контактов; Г-отключенное положение (60 мм-ход в розеточном контакте; 208 мм-полный ход подвижного контакта)

не ниже 300 МОм для выключа­телей 3—10 кВ, 1000 МОм — при напряжении 15—150 кВ и 3000 МОм — при напряжении 220 кВ и выше.

Измерение сопротивления изоляции подвижных час­тей рекомендуют производить также после заливки выклю­чателя маслом. Для этого выводы выключателя закорачи­вают и производят измерение сопротивления его изоляции во включенном и отключенном положении. Сопротивление изоляции подвижных частей вычисляют по формуле:

Испытание выключателя повышенным напряжением промышленной частоты является заключительным этапом профилактических испытаний выключателя. Для таких испытаний закорачивают выводы выключателя и на них подают напряжение от испытательной установки.

Нормы испытательных напряжений приведены в Правилах [20].

Проверка хода подвижных стержней (контактов) и одновременности их замыкания и размыкания в розеточных контактах выключателей (например, ВМПЭ-10 на ток до 1600 А) определяется с помощью штанги 1

(рис. 4.20). Для этого отворачивают болты, сни­мают крышку полюса; вынимают маслоотделитель, пово­рачивая наружный рычаг механизма полюса вниз; подводят направляющую колодку 2 под­вижного контакта до упора в буфер и заворачивают штангу в резьбовое отверстие колод­ки. При положении вала выключателя «отключено» соединяют наружные рычаги меха­низмов полюсов с изоляционными тягами и делают первую метку Г на штанге. При помо­щи рычага ручного включения, медленно включая выключатель, доводят подвижные кон­такты до касания с ламелями розеточного (неподвижного) контакта. Делают в этот момент вторую метку В на штанге и измеряют разновременность касания подвижных контактов при помощи ламп накаливания, собранных в схему (рис. 4.21) и зажигающихся при каса­нии контактов в момент включения; их разновременность не должна превышать 3 мм. За­тем продвигают подвижный контакт до упора и наносят третью метку Б на штанге, после чего производят измерение полного хода подвижного контакта между метками Г и Б (208+3) и (208-5) мм и хода в розеточном контакте между метками В и Б (60+3) и (60-5) мм у выклю­чателей ВМПЭ-10 на ток до 1600 А. Ход в розеточном контакте измеряют во всех полюсах.

Рис. 4.21. Схема для определения разновременности касания дугогасительных контактов ПО

Разновременность и ход подвижного контакта регу­лируют изолированной тягой. Для этого отключают выключатель и делают метку на штанге. Отсоединяют изо­лирующую тягу. Поднимают стержень вверх до упора и измеряют верхний недоход, который должен быть не бо­лее 6 мм; опускают стержень вниз до упора и измеряют нижний недоход, который должен быть не менее 3 мм. После регулировки до отказа заворачивают пробку маслосливного отверстия. Ход в розеточном контакте и пол­ный ход подвижного контакта регламентируются инструк­циями по эксплуатации выключателя.

Проверку срабатывания привода при пониженном напряжении проводят, исходя из условий, что минимальное напряжение срабатывания катушки отключения привода выключателя должно быть не менее 35 % номинального, а напряжение не более 65 % номинального должно обеспечивать их надежную работу. Напряжение надежной работы контак­торов включения масляных выключателей должно быть не более 80 % номинального.

Завершают испытания выключателя проверкой многократными вклю­чениями и отключениями, которые должны проводиться при напряжениях в момент включения на зажимах катушки привода 110; 100; 90 и 80 % номинального. Для каждого напряжения число указанных операций составляет 3—5. Нередко по техническим причинам трудно получить испытательное напряжение от источника питания 1,1 UHOM. Тогда допус­кается проведение испытания при том максимальном напряжении, которое можно получить от источника питания.

Если выключатель предназначен для работы в цикле АПВ, его необходимо прове­рить на четкость работы в цикле «отключение — включение — отключение» при номи­нальном напряжении на зажимах катушки привода. Проверку производят два — три раза.

Испытания вакуумных выключателей включают в себя:

—измерение хода, провала и износа контактов вакуумных дугогасительных камер (ВДК);

— измерение сопротивления основной изоляции и вторичных цепей, в том числе вклю­-
чающей и отключающей катушек;

— испытания повышенным напряжением основной изоляции выключателя;

— регулировка контактного нажатия;

— измерение сопротивления изоляции;

— измерение сопротивления постоянному току контактов ВДК;

— контроль одновременности замыкания контактов ВДК;

— проверку собственного времени включения и отключения выключателя;

— проверку напряжения включения и отключения выключателя.

Измерения хода и провала контактов выполняются при отключенном и включенном по­ложениях выключателя. При включении усилие привода передается через изоляционную тягу и узел контактной пружины на подвижный контакт ВДК, который перемещается до соприкосно­вения с неподвижным контактом ВДК (ход контакта). Далее изоляционную тягу перемещают на расстояние, равное провалу контакта (до момента посадки привода на «защелку»), при этом взводится контактная пружина, обеспечивающая конечное контактное нажатие.

Ход контакта определяют как разность расстояний между нижним фланцем ВДК и верхней шайбой 5 (см. рис. 4.15) при отключенном и включенном положениях выключате­ля. Соответственно провал контакта определяется как разность расстояний между нижней 17 и верхней 5 шайбами контактной пружины при тех же положениях выключателя.

Неодновременность работы полюсов создает неравномерный износ контактов. При измерении этого параметра электронным миллисекундомером его значение должно быть не более 2 мс, а осциллографом — не более 1,8 мм [31].

Испытания основной изоляции выключателей проводят напряжением 37,8 кВ промышленной частоты в течение 1 мин по схемам рис. 4.22 а, б или напряжени­ем 32 кВ в течение 5 мин по схемам рис. 4.22 вд. Испытательная установка должна иметь защи-

ту, настроенную на ток КЗ не более

20 мА. При испытании изоляции

фасадная перегородка выключа-

теля используется как за­щитный

Элегазовые выключателирегу­ли-

руют и налаживают перед вводом эле-

газового КРУ в эксплуатацию, а

Рис. 4.22. Схема испытания изоляции вакуумного выключателя

также после каждого капитального и внеочередного ремонта, связанного с разборкой или заменой отдельных деталей и элементов, когда существует вероятность изменения тех или иных параметров и характеристик.

Дата добавления: 2017-11-04 ; просмотров: 4591 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Урок на тему Высоковольтные выключатели

Высоковольтные выключатели служат для отключения и включения электрических цепей под нагрузкой, а также отключения токов к. з. и выпускаются для наружной и внутренней установки на различные номинальные токи и напряжения. В зависимости от среды, в которой осуществляется процесс гашения электрической дуги, выключатели разделяют на жидкостные, газовые и вакуумные. Из жидкостных наиболее распространены масляные выключатели, а из газовых — воздушные. Вакуумные выключатели будут использоваться в новой серии КРУ.

Масляные выключатели бывают многообъемные и малообъемные.

В многообъемных все токоведущие части, кроме выводов, помещены в бак, заполненный минеральным (трансформаторным) маслом, которое служит для гашения дуга и изоляции токоведущих частей. На напряжение до 10 кВ включительно изготовляют однобаковые выключатели (все три фазы размещены в одном баке), а на напряжение 35 кВ и выше — трехбаковые (каждая фаза размещена в отдельном баке). В простейших выключателях использован способ гашения дуги при ее свободном горении в масле.

Процесс гашения дуги при отключении тока нагрузки или к. з. происходит следующим образом. Электрическая дуга, обладая высокой температурой, разлагает и превращает окружающий ее слой масла в газ, давление которого достигает 0,5—1 МПа. Отдавая теплоту на испарение и разложение масла, ствол дуги интенсивно охлаждается. Охлаждение дуги, циркуляция масла, возникающая в зоне ее горения, и повышенное давление газа способствуют деионизации и гашению дуги. Для удаления газа и снижения давления внутри бака выключателя предусматривается газоотвод.

Читать еще:  Можно ли использовать обычный выключатель для проходного выключателя

Многообъемные выключатели в РУ на напряжение до 10 кВ из-за возможности их разрушения (взрыва), сопровождаемого выбросом большог количества масла, и необходимости специальных помещений (камер) для установки применяют редко.

Такие выключатели, снабженные дугогасительными камерами, широко применяются в открытых РУ на напряжение 35 кВ и выше.

В малообъемных выключателях на каждый полюс имеется отдельный бачок, в котором размещены контакты и дугогасительная камера. Так как бачки установлены на изоляторах, масло служит только для гашения дуги.

Малообъемные масляные выключатели используются преимущественно в электроустановках напряжением до 10 кВ. Из-за малого объема масла и применения специальных дугогасительных камер они не могут быть повреждены при отключении токов к.з. вследствие взрыва и поэтому могут устанавливаться в любом помещении, без специальных камер и в ячейках КРУ.

Предназначены для коммутации цепей номинальным напряжением

10 кВ трехфазного переменного тока промышленной частоты в нормальном режиме работы установки, а также для автоматического отключения этих цепей при токах короткого замыкания и перегрузках.

Используются для комплектации шкафов КРУ и КСО в электроустановках общепромышленного назначения. По роду установки выключатели разделяются на две группы: – для обычных распределительных устройств (например, ячеек типа КСО) – для комплектных распределительных устройств (КРУ) с ячейками выкатного типа. В этом случае к обозначению типа выключателя добавляется буква ‘К’.

Структура условного обозначения:
– В выключатель
– М маломаслянный
– П подвесное исполнение полюсов
– Номинальное напряжение, кВ
– номинальный ток, А – номинальный ток, отключения, кА
– К для КРУ

Назначение, устройство и принцип действия масляного выключателя типа ВМП-10

Выключатели ВМП-10 (масляные подвесные) предназначены для работы в закрытых установках переменного тока высокого напряжения (10 кВ) частотой 50 Гц и изготовляются двух видов: обычные — для работы в нормальных климатических условиях и тропические (Т). Кроме того, их выполняют с усиленной механической стойкостью (У).

Рисунок 1 — Масляный выключатель ВМП-10: общий вид

Малообъемный масляный подвесной выключатель ВМП-10 показан на

(рис 1, а). На лицевой стороне стальной рамы 1 установлены фарфоровые изоляторы 5, на которых подвешены полюса 6 выключателя. Главный вал 4 связан с подвижными контактами через тяги 3, выполненные из влагостойкого изоляционного материала, и рычаг. Внутри рамы размещена отключающая пружина 2.

В зависимости от типа распределительных устройств выключатели выпускаются по габаритам двух исполнений: для комплектных стационарных распредустройств КСО (ВМП-10, ВМП-10У, ВМП-10Т) и для малогабаритных комплектных распредустройств КРУ с выкатными ячейками (ВМП-10К, ВМП-10КУ, ВМП-10КТ).

Рисунок 2 — ВыключательВМП-10:

1 — полюс, 2— изолятор, 3— рама, 4 — изоляционная тяга, 5 — приводной вал,

6 — масляный буфер, 7 — болт заземления

Выключатель ВМП-10 (рис. 2) изготовляют трехполюсным, рассчитанным на номинальное напряжение 10 кВ и токи 600, 1000 и 1500 А. Он смонтирован на общей сварной раме 3, на которой укреплены полюсы 1 на шести изоляторах 2 (по два на полюс) с эластичным креплением арматуры для повышения механической прочности выключателя. Внутри рамы расположен приводной механизм, который через изоляционную тягу 4 передает движение от привода подвижным контактам выключателя и состоит из приводного вала 5 с рычагами, отключающих пружин и масляного буфера 6.

Каждый полюс представляет собой прочный влагостойкий изоляционный распорный цилиндр, на концах которого армированы металлические фланцы.

На верхнем и нижнем фланцах имеются контактные поверхности для присоединения к выключателю ответвительных шин. На верхнем фланце укреплен корпус из алюминиевого сплава, внутри которого расположены рычажный механизм, подвижный контактный стержень, роликовое токосъемное устройство и маслоотделитель. Корпус закрывается крышкой, имеющей отверстия для выхода газов и маслоналивное с пробкой. Нижний фланец закрывается съемной крышкой, внутри которой расположен неподвижный розеточный контакт, а снаружи — пробка отверстия для спуска масла. Для наблюдения за уровнем масла на выключателе установлен маслоуказатель. Внутри цилиндра над розеточным контактом имеется гасительная камера, работающая на принципе масляного дутья.

Выключатель включается за счет энергии привода, а отключается пружинами. Для смягчения удара при включении служит пружинный буфер, увеличивающий усилия отключения и ускоряющий размыкание контактов, а при отключении — масляный буфер.

Для повышения стойкости контактов против действия электрической дуги и увеличения срока их службы съемный наконечник подвижного контакта и верхние торцы ламелей розеточного контакта облицованы дугостойкой металлокерамикой.

Рисунок 3 — Полюс выключателя ВМП-10:

1, 6 — нижний и верхний выводы, 2 — неподвижный розеточный контакт,

3, 5 — фланцы, 4 — изоляционный цилиндр, 7 — роликовое токосъемное устройство, 8 — маслоотделитель, 9 — верхняя крышка, 10, 20 — пробки для заливки и спуска масла, 11 — корпус полюса, 12 — направляющие колодки, 13 — выпрямляющий механизм, 14 — металлические упоры, 15 — направляющий стержень,16 — подвижный контакт, 17 — дугогасительная камера,

18 — маслоуказатель,19 — съемное силуминовое дно.

Детали устройства полюса выключателя ВМП-10 показаны на рис. 2. Корпус полюса выключателя закрыт крышкой, снабженной отверстием для выхода газов и пробкой.

Между крышкой и корпусом установлен маслоотделитель для разобщения газов и масла при выхлопе в процессе гашения дуги.

Электрическая цепь подводится к подвижному контакту от верхнего вывода через направляющие стержни и роликовый токосъем.

Центрирование хода подвижного контакта по конструктивной оси полюса осуществляется капроновой колодкой и роликами токосъема. С выводом жестко соединены стеклоэпоксидный цилиндр, армированный фланцами 3 и 5, и корпус 11 с механизмом подвижного контакта.

В нижней части цилиндра расположена дугогасительная камера, собранная из пластин фибры, гетинакса и электрокартона на стяжных шпильках. Пластины имеют фигурные вырезы. После сборки камеры вырезы в пластинах образуют две-три радиальные щели поперечного дутья с раздельными вертикальными выходами вверх. Над щелями располагается несколько масляных карманов. Камера опирается на изоляционный цилиндр, установленный на нижнем вводе. Здесь же смонтирован розеточный контакт и предусмотрена пробка масловыпускного отверстия.

Нижний фланец имеет карман для воздушного буфера и маслоуказатель, снабженный обратным клапаном, который размещен в основании маслоуказателя. Обратный клапан предотвращает прорыв дугогасительной среды через маслоуказатель при возрастании давления внутри полюса. Воздух, всегда имеющийся в кармане, при гашении дуги сжимается, аккумулируя энергию в момент пика давления. Впоследствии эта энергия освобождается, обеспечивая в зоне дуги давление, необходимое для ее гашения.

Для смягчения ударов подвижной части на границах ее хода установлены масляный и пружинный буфера. Для отключения выключателей служат специальные пружины. Буфера и пружины расположены на раме.

Принцип действия выключателя основан на гашении электрической дуги, возникающей при размыкании контактов, потоком газомасляной смеси, которая образуется в результате интенсивного разложения трансформаторного масла (им заполнен выключатель) под действием высокой температуры дуги.

Этот поток получает определенное направление в дугогасительном устройстве, размещенном в зоне горения дуги.

Гашение электрической дуги при переменном токе облегчается тем, что ток в течение одного периода дважды проходит через нуль.

Выключатель имеет следующие особенности: его контакты облицованы дугостойкой металлокерамикой, что значительно увеличивает срок их службы; дугогасительные устройства доступны для осмотра и ревизии; после осмотра не требуется повторной регулировки; выводы допускают непосредственное присоединение алюминиевых шин. Каждый полюс выключателя размещен в отдельном цилиндре (горшке), и после присоединения токопроводящих шин к крышкам цилиндров последние оказываются под напряжением. Поэтому на поверхности цилиндров наносят предостерегающие знаки в виде стрелы и все три полюса закрепляют на изоляторах на общей раме.

Масляные выключатели характеризуются: номинальным напряжением

(в киловольтах), номинальным током (в амперах), отключающей способностью — мощностью отключения (в мегавольт- амперах), номинальным током отключения (в килоамперах) и другими параметрами.

Отключающая способность масляного выключателя определяется той предельной мощностью короткого замыкания, которую он под действием защиты способен отключить без каких-либо разрушений выключателя. Выключатели не должны подвергаться действию тока, превышающего предельный сквозной ток короткого замыкания.

nataliyatovmach.pro

При ревизии и наладке баковых масляных выключателей дополнительно необходимо провести ревизию и регулировку контактной системы выключателя.

Для обеспечения доступа к контактной системе бакового выключателя необходимо опустить бак вниз при помощи специальных устройств, предусмотренных конструкцией выключателя.

При ревизии контактной системы выключателя необходимо проверить:

  • состояние контактов. Площадь касания контактов должна быть не менее 70% общей контактной поверхности. Наконечники рабочих контактов следует заменить, если глубина выгорания составляет более 2-3 мм; неровности снять напильником. При замене наконечника неподвижного контакта выключателя ВМБ-10 новый наконечник навернуть до упора, после чего проверить горизонтальное положение нижнего скошенного торца контакта; необходимое положение достигается поворотом изолятора. При замене подвижного контакта новый наконечник закрепить так, чтобы грани его устанавливались параллельно шине, а штифт вошел бы в отверстие в торце контакта.

При осмотре неподвижных контактов следует проверить горизонтальное положение нижнего скошенного торца контакта. Если положение контакта требует исправления, то ослабить болты, крепящие изолятор к крышке, и повернуть изолятор вокруг его оси до такого положения, при котором торец контакта установится горизонтально

  • величину хода в контактах (вжим). Ход контактов определить по величине сжатия (вжима) контактных пружин, он должен удовлетворять требованиям, приведенным в таблице

При необходимости ход контактов отрегулировать поворотом вала привода по отношению к валу выключателя. При этом у выключателей ВБМ-10 расстояние по вертикали между торцами неподвижного и подвижного контактов в отключенном состоянии должно составлять 90 ± 2 мм

  • величину нажатия контактов. У баковых выключателей контактное давление определить по величине провала контактов, т.е. по величине перемещения подвижных контактов от момента их соприкосновения с неподвижными контактами до полного включения выключателя. Нормальному давлению соответствует нормальный ход в контактах (вжим) (см таблицу). Регулировку нажатия контактов произвести вращением двух винтов, на которых закреплен комплект подвижных контактов к угольникам гетинаксовой штанги.
  • величину хода траверсы (см таблицу). При необходимости ход отрегулировать поворотом вала привода по отношению к валу выключателя или изменить длину общей тяги.

По окончании ревизии бак поднять вверх и прикрепить к крышке болтами. Для предохранения бака от деформации при отключении тока к.з. необходимо при установке и креплении выключателя надеть на болты, стягивающие бак с крышкой, съемные предохранительные трубки. Затем сочленить вал привода и вал выключателя и произвести проверку совместной работы привода и выключателя. При этом проверить величину угла поворота вала выключателя (наличие нормального недохода до мертвого положения (см таблицу)

Для проверки и регулировки величины недохода следует вывинтить упорный болт 10 (см рисунок) на крышке бака и вкелючить выключатель с переводом его за мертвую точку так, чтобы механизм выключателя удерживался во включенном положении при освобождении механизма расцепления привода. Затем вывернуть упорный болт до момента отключения, повернуть его еще на один-два оборота и закрепить контргайкой. Зазор между опорной плоскостью кривошипа и конусом упорного болта должен быть в пределах 1-1,5 мм. Грубое несоответствие этому требованию устранить изменением крепления соединительной полумуфты на валу привода.

Читать еще:  Стоп сигнал выключатель гольф 4

1. Введение

1.1. Настоящее Руководство по капитальному ремонту масляного выключателя ВМГ-10-630-20 и ВМГ-10-1000-20 1 предусматривает применение персоналом энергетических и других специализированных предприятий наиболее рациональных форм организации ремонтных работ и передовых технологических приемов их выполнения.

1 В дальнейшем для краткости — Руководство.

1.2. В Руководстве приведены:

• технические требования к объему и качеству ремонтных работ и к методам их выполнения (независимо от организационно-технического уровня ремонтных подразделений);

• методы контроля при ремонте узлов и деталей оборудования и правила приемки оборудования в ремонт и из ремонта;

• критерии оценки качества выполнения ремонтных работ.

1.3. Руководство составлено на основе обобщения передового опыта работы ремонтных предприятий энергосистем, а также технической документации завода-изготовителя.

1.4. Руководство предусматривает модернизацию бакелитовой трубки проходного изолятора выключателей, выпущенных до 1976 г.

1.5. Техническая характеристика масляных выключателей ВМГ-10-630-20, ВМГ-10-1000-20:

Напряжение, кВ:

Номинальный ток, А

Номинальный ток отключения, кА

Предельный сквозной ток, кА:

эффективное значение периодической составляющей

Ток термической устойчивости для промежутка времени 4 с, кА

Ток включения, кА:

эффективное значение периодической составляющей

Собственное время отключения выключателя с приводом ПЭ-II/ПП-67, с

Не более 0,10 — 0,12

2. Организация работ по ремонту выключателя

2.1. Общие положения

2.1.1. Планирование и организация ремонтных работ осуществляется в соответствии с действующими Инструкциями по организации планово-предупредительного ремонта оборудования электросетевых предприятий.

2.1.2. Сроки выполнения ремонтных работ должны определяться с учетом следующих условий:

а) изменение состава бригады до окончания ремонта не допускается;

б) должна предусматриваться непрерывная загрузка отдельных исполнителей и бригады в целом;

в) режим работы ремонтного персонала должен быть подчинен максимальному сокращению сроков ремонтных работ.

2.1.3. Руководство предусматривает состав ремонтной бригады из 3 чел.: электрослесарь 4-го разряда — 1 чел.; электрослесарь 3-го разряда — 1 чел.; электрослесарь 2-го разряда — 1 чел.

2.1.4. Трудозатраты на капитальный ремонт выключателя определяются на основании «Норм времени на капитальный и текучий ремонты и эксплуатационное обслуживание оборудования подстанций 35 — 500 кВ и распределительных сетей 0,4 — 20 кВ» с учетом дополнений и изменений согласно указанию Минэнерго СССР от 28.04.1977 г. № 9 НС-5195 в составляют 18,5 чел.-ч. В случае выполнения модернизации трудозатраты увеличиваются на 2,5 чел.-ч.

2.1.5. Наиболее прогрессивным является проведение ремонта агрегатно-узловым методом специализированными бригадами. В этом случае ремонт сводится к замене полюсов выключателя на заранее отремонтированные в мастерской.

При производстве ремонта на месте установки демонтаж полюсов выключателя с опорных изоляторов производить только в случае необходимости их замены или в случае замены опорных изоляторов.

2.2. Подготовка к ремонту

2.2.1. Подготовка к капитальному ремонту производятся в соответствии с конкретным объемом работ, предусмотренных для данного оборудования.

2.2.2. К началу ремонта должна быть укомплектована бригада из рабочих соответствующей квалификации, прошедших обучение, проверку знаний и инструктаж по ТБ.

2.2.3. Перед началом работы бригаде должно быть выдано нормированное план-задание с конкретным перечнем работ и указанием объема, трудозатрат и срока окончания ремонтных работ.

2.2.4. До начала ремонта необходимо:

а) подготовить набор слесарного инструмента, а также приборы и мерительный инструмент (приложения 1, 2);

б) подготовить и доставить к рабочим местам основные и вспомогательные материалы и запасные части для ремонта (приложения 3, 4);

в) подготовить и проверить защитные средства;

г) согласовать порядок работы с другими бригадами, выполняющими смежные работы.

2.2.5. Производителю работ совместно с руководителем ремонта после оформления наряда на ремонт выключателя необходимо:

а) убедиться в правильном и полном выполнении всех мероприятий, обеспечивающих безопасность работ;

б) осуществить все противопожарные мероприятия.

2.3. Контроль качества ремонтных работ

2.3.1. Контроль качество ремонтных работ со стороны производителя работ осуществляется в следующем порядке:

а) проверку состояния каждой сборочной единицы в ходе выполнения работ производить совместно с руководителем ремонта. При этом руководитель должен дать указания о способах ремонта и дополнить (уточнить) технические требования на ремонт, по которым будут осуществляться приемка сборочной единицы из ремонта и оценка качества ремонтных работ;

б) законченные скрытые работы и выполненные промежуточные операции предъявлять руководителю для приемки и оценки качества.

2.3.2. Окончательную приемке выключателя производят представители эксплуатационного подразделения совместно с руководителем ремонта, о чем составляется ведомость основных показателей технического состояния выключателя после капитального ремонта, которая подписывается представителями эксплуатации и руководителем ремонта (приложение 5).

2.4. Приемка выключателя в ремонт

2.4.1. До начала капитального ремонта комиссия из представителей эксплуатационного и ремонтного подразделений с обязательным участим руководителя ремонта проверяет готовность к ремонту:

а) наличие ведомости объема работ капитального ремонта;

б) наличие материалов, запасных частей, оснастки и инструмента;

в) достаточность мероприятий о технике безопасности, охране труда и пожарной безопасности.

2.4.2. При приемке выключателя в ремонт необходимо ознакомиться с ведомостью дефектов и объемом работ, выполненных в предыдущий капитальный ремонт и в межремонтный период.

3. Наружный осмотр и подготовка выключателя к разборке

3.1. Осмотреть выключатель и привод, обратив внимание на наличие подтеков масла из-под маслоспускной пробки, маслоуказателя, наличие выброса масла через жалюзи маслоотделителя.

3.2. Произвести несколько операций включения и отключения.

3.3. Снять оперативное напряжение.

3.4. Произвести расшиновку выключателя.

3.5. Слить масло, проследив за снижением уровня масла в маслоуказателях.

4. Разборка выключателя

4.1. Общая разборка выключателя

4.1.1. Расшплинтовать ось 4 (рис. д1), отсоединить контактный стержень 2 от серьги 3.

4.1.2. Удалить контактный стержень 2 от полюса выключателя.

4.1.3. Стать проходной изолятор 1.

4.1.4. Стать нижнюю крышку 1 (рис. 2) с неподвижным розеточным контактом 2.

4.1.5. Вынуть изоляционные цилиндры 3, 5 и дугогасительную камеру 4 и уложить их на железный противень.

Примечание . Дугогасительную камеру предохранять от увлажнения, загрязнения и повреждения. Длительное хранение камеры целесообразно в чистом «сухом» трансформаторном масле.

4.2. Разборка дугогасительного устройства

4.2.1. Отвинтить гайки 1 (рис. 3).

4.2.2. Разобрать камеру, сложив пластины 314 на противень.

4.3. Разборка неподвижного розеточного контакта

4.3.1. Стать кольцо 2 (рис. 4), пружины 1, 5, прокладки 4.

4.3.2. Вывернуть болты 6, 8, стать гибкие связи 7 и ламели 3.

4.4. Разборка проходного изолятора

4.4.1. Стать токоведущую скобу 1 (рис. 5).

4.4.2. Вынуть кольцо 2, картонную шайбу 3, кожаную манжету 4, втулку 5.

4.4.3. Извлечь бакелитовую трубку 8 с верхней резиновой манжетой.

4.4.4. Стать резиновую манжету с бакелитовой трубки.

4.4.5. Провести модернизацию бакелитовой трубки 8 согласно разделу 7 данного Руководства.

4.5. Разборка подвижного контакта

4.5.1. Отсоединить гибкую связь 4 (рис. 6) от контактной колодки 3.

4.5.2. Отвинтить гайку 3, снять контактные колодки 2.

4.6. Разборка масляного буфера

Отвинтить гайку 2 (рис. 7), вынуть шток 1, поршень 3, пружину 4.

5. Технические требования на дефектацию и ремонт деталей общего применения

5.1. Резьбовые соединения и крепежные детали

5.1.1. Состояние резьбы проверить внешним осмотром, а также навинчиванием гаек (ввертыванием болта) от руки.

5.1.2. Детали подлежат замене при наличии следующих дефектов:

а) заусенцев, вмятин, забоин, выкрашиваний и срыва резьбы более двух ниток;

б) люфтов при завинчивании гаек (вворачивании болтов);

в) трещин и несмываемой ржавчины;

г) повреждения граней и углов на головках болтов и гаек или износа граней более 0,5 мм (от номинального размера).

5.1.3. Детали подлежат ремонту при наличии следующих дефектов:

а) местных повреждений по резьбе не более половины высоты резьбы;

б) местных повреждений общей протяженностью не более 10 % длины витка. Такие дефекты устранять прогонкой резьбонарезным инструментов или в отдельных случаях опиловкой.

5.1.4. Отверстия для шплинтов в болтах не должны быть забиты и увеличены.

5.1.5. Перед установкой резьбовые соединения смазать смазкой ЦИАТИМ-205.

5.2. Плоские шайбы, стопорные и пружинные шайбы

5.2.1. Детали подлежат замене при:

а) наличии трещин, изломов;

б) потере упругости;

в) разводе пружинной шайбы менее полуторной ее толщины.

5.2.2. Пружинные шайбы, бывшие в эксплуатации, допускаются к повторному применению только в том случае, если они не потеряли своей упругости, которая характеризуется разводом концов шайб. Нормальный развод пружинной шайбы равен двойной ее толщине, допустимый — полуторной.

5.3. Пружины

5.3.1. Пружины подлежат замене при наличии следующих дефектов:

а) надломов, трещин, засветлений, несмываемой ржавчины;

б) неравномерности шага витков пружины сжатия более 10 % по всей длине;

в) потере упругости пружины.

5.4. Резиновые детали

5.4.1. Состояние пружины определяется внешним осмотром.

5.4.2. Резиновые детали подлежат замене при наличии следующих дефектов:

а) трещин, срезов, заработок, расслоений;

б) остаточной деформации;

в) потере пластичности.

5.4.3. В зимнее время перед установкой резину рекомендуется прогреть в помещении до комнатной температуры.

5.5. Детали из гетинакса, фибры, картона и бакелита

5.5.1. Состояние деталей проверяется осмотром.

5.5.2. Детали подлежат замене при наличии следующих дефектов:

а) порывов, срезов, трещин;

б) морщин, складок, надломов;

в) разбухания, увеличения размеров;

г) рыхлых включений;

д) неравномерности толщин прокладок более 0,1 мм.

5.5.3. Уплотняющие прокладки должны быть равномерно зажаты между деталями. Не допускается выступание прокладок за края деталей более чем на 0,5 мм.

5.5.4. При незначительных трещинах, расслоениях, обгаре рекомендуется тщательно очистить поверхность, обезжирить и покрыть бакелитовым лаком.

5.6. Валы, оси

5.6.1. Оси подлежат замене при наличии следующих дефектов:

а) износа по диаметру, овальности в местах износа;

б) искривления осей в средней части и в концах более 0,2 — 0,3 мм;

в) трещин, задиров на поверхностях трения валов и осей;

г) седловин на рабочих поверхностях трения валов и осей глубиной более 1 мм.

5.6.2. Искривление осей проверять по линейке, отвесу, стеклу. Правку валов и осей производить в холодном состоянии легкими ударами молотка на устойчивой опоре.

Для предотвращения повреждения деталей на опору и под молоток ставить деревянные или свинцовые прокладки.

5.6.3. Диаметр и эллипсность осей проверять штангенциркулем.

5.6.4. Задиры на поверхностях осей снимать аккуратно напильником или шлифовальной шкуркой.

5.6.5. Седловины и вмятины на рабочих поверхностях осей определять измерением наименьшего диаметра в месте вмятины. Опиловка седловин и вмятин на рабочих поверхностях не допускается.

5.7. Гибкие связи

Гибкие связи подлежат замене при изломе пластин более 1/4 толщины.

5.8. Поршни

При наличии трещин — заменить. Задиры, следы коррозии зачистить.

5.9. Основные детали

Произвести дефектацию и ремонт дугогасительной камеры, контактного стержня, проходного изолятора, ламели, опорного изолятора, бака выключателя согласно пп. 5.9.1 — 5.9.6.

5.9.1. Дугогасительная камера (рис. 3)

Количество на изделие — 3.

Позиция на рисунке

Способ установления дефекта и контрольные инструмент

Способ устранения дефекта

Обугливание без увеличения сечения дутьевых каналов

Зачистить напильником или мелкой шкуркой, затем промыть трансформаторным маслом

Обгар. Увеличение диаметра более 28 — 30 мм

Осмотр. Измерение. Штангенциркуль

Обгар. Увеличение отверстия в перегородках в сторону выхлопных каналов до 3 мм

Технические требования к отремонтированной детали

1. Размеры должны быть: А = ; Б = ; В = ; зазор С = 1 ÷ 4мм

2. Высота камеры Н должна быть равной

3. Гайки на шпильках навинчены до отказа.

5.9.2. Контактный стержень (поз. 2 рис. 1)

Количество на изделие — 3.

Способ установления дефекта и контрольный инструмент

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector