Расчет автоматического выключателя для насоса
Расчет количества автоматов в щитке в доме и в квартире: разбираем по порядку
Расчет автоматов защиты производится по планируемой нагрузке в электрической сети или групповой цепи квартиры. Также расчет автоматов можно произвести по сечению электрического кабеля уже проложенного и функционирующего в квартире.
Хочу предложить, расчет автоматов защиты в квартире в двух вариантах. Каждый вариант применяется для различных состояний электропроводки, но оба варианта подчиняются правилам выбора автомата защиты, в том числе, оговоренных в ПУЭ.
Варианты расчетов автоматов защиты
1.Вариант. Вы планируете новую электропроводку. В этом случае расчет автоматов защиты производится по планируемой потребляемой мощности групповых цепей квартиры, всей электросети квартиры в целом совместно с анализом сечения жил токопроводящего (ТПЖ) кабеля.
2.Вариант. У вас уже есть, функционирующая электропроводка и вам нужно, например, поменять устаревшие автоматы на новые.
Рассмотрим оба этих варианта.
Организация точки ввода
В процессе подключения от уличного щита учета электроэнергии (ЩУ), расположенного на отводной опоре ЛЭП, к распределительному щитку (РЩ), смонтированному в помещении, ведется кабельная линия (подземная или воздушная).
В щите учета (ЩУ), зачастую, находится только вводной автомат и прибор учета электроэнергии. В распределительный щиток (РЩ), который устанавливается непосредственно в доме, монтируются автоматы защиты, устройства защитного отключения и другие элементы, о которых речь пойдет ниже.
В отдельных случаях оборудование для ЩУ и РЩ может быть установлено в одном корпусе.
Рабочие параметры оборудования, устанавливаемого в щиток учета, его перечень и количество – все это должно быть прописано в проекте электроснабжения (или, по крайней мере, должно быть рассчитано профильными специалистами). Но есть требования, которые предъявляются непосредственно к конструкции электрического щита.
Конструкция электрического щитка должна обеспечивать удобство подвода питающего кабеля, в нем должны присутствовать нулевые шины и шины заземления. При этом электрический щит должен обладать внутренним пространством, достаточным для размещения многочисленных отходящих кабелей, и его запасом, необходимым для возможного расширения и модернизации электроустановки.
Добавим, что корпус щитка должен быть устойчив к воздействию огня или быть изготовлен из самозатухающего материала. При этом он обязан надежно защищать встроенное оборудование от возможных повреждений. Против предумышленных повреждений поможет встроенный в дверь или ручку щитка замок, а защиту от воздействия пыли и влаги гарантирует указанная в спецификации степень защиты IP. Если щиток предполагается установить на улице или в помещении, где необходима повышенная защита от влаги, пыли и механических повреждений, то лучше отдать предпочтение щиткам класса IP65 –IK09.
Для того чтобы в процессе подключения избежать разногласий со специалистами энергоснабжающих компаний (требования которых зачастую противоречат друг другу), одновременно с архитектурным проектом следует разработать и согласовать проект электроснабжения.
Если точка подключения организована в соответствии с требованиями согласованного электропроекта, проблем в процессе подключения и дальнейших проверок со стороны контролирующих организаций у владельца участка, как правило, не возникает. Следовательно, труд, связанный с установкой и комплектацией электрического щитка, не окажется напрасным.
Поговорим о том, какова должна быть комплектация домашнего распределительного щита.
Нагрузка электросети
Любая электропроводка разделена на так называемые группы. Электропроводка каждой группы выполняется электрическим кабелем определенного сечения и защищается автоматом защиты с заранее рассчитанным номиналом. Для того чтобы выбрать сечение кабеля и номинал автомата защиты необходимо рассчитать предполагаемую нагрузку этой электросети.
При расчете нагрузки электросети нужно помнить, что расчет токовой нагрузки (величина силы тока в сети, при работе электроприбора) отдельного бытового прибора (потребителя) и группы из нескольких потребителей отличаются друг от друга.
Кроме этого расчет нагрузки при однофазном электропитании (220 вольт) отличается от расчета трехфазного электропитания (380 вольт). Начнем разбирать расчет нагрузки электросети в однофазной сети с рабочим напряжением 220 Вольт.
Вводной выключатель и прибор учета
Начальной точкой домашней электроустановки считается вводной выключатель, к которому подключается электросчетчик, и остальные устройства, расположенные после прибора учета.
Номинал вводного АВ определяется энергоснабжающей организацией, исходя из выделенной мощности. Например, при трехфазном вводе и 15 кВт выделенной мощности номинал – 25А. При 1-фазном вводе и 7,5 кВт номинал – 40 А. При этом, если мощность более 11 кВт, электроснабжение должно быть трёхфазным. При наличии в проекте трёхфазных потребителей допускается трёхфазное подключение при выделенной мощности менее 11 кВт.
Устройство ввода резерва
Если в состав электроустановки входит источник автономного электроснабжения (например, дизельгенератор), то система должна иметь устройство ввода резерва, которое устанавливается после прибора учета электроэнергии. Речь идет о переключателе, позволяющем в ручном режиме подсоединять потребителей к генератору или к внешней системе электроснабжения. Данное устройство не позволяет одновременно задействовать два разных источника питания (трансформаторную подстанцию и дизельгенератор). В этом и состоит его ключевое преимущество.
По каким токам производят расчет автоматов
Функция автоматического выключателя состоит в защите электропроводки, подключенной после него. Основным параметром, по которому производят расчет автоматов, является номинальный ток. Но номинальный ток чего, нагрузки или провода?
Исходя из требований ПУЭ 3.1.4, токи уставок автоматических выключателей которые служат для защиты отдельных участков сети, выбираются по возможности меньше расчетных токов этих участков или по номинальному току приемника.
Расчет автомата по мощности (по номинальному току электроприемника) производят, если провода по всей длине на всех участках электропроводки рассчитаны на такую нагрузку. То есть допустимый ток электропроводки больше номинала автомата.
Также учитывается время токовая характеристика автомата, но про нее мы поговорим позже.
Например, на участке, где используется провод сечением 1 кв. мм, величина нагрузки составляет 10 кВт. Выбираем автомат по номинальному току нагрузки — устанавливаем автомат на 40 А. Что произойдет в этом случае? Провод начнет греться и плавиться, поскольку он рассчитан на номинальный ток 10-12 ампер, а сквозь него проходит ток в 40 ампер. Автомат отключится лишь тогда, когда произойдет короткое замыкание. В результате может выйти из строя проводка и даже случиться пожар.
Поэтому определяющей величиной для выбора номинального тока автомата является сечение токопроводящего провода. Величина нагрузки учитывается лишь после выбора сечения провода. Номинальный ток, указанный на автомате, должен быть меньше максимального тока, допустимого для провода данного сечения.
Таким образом, выбор автомата производят по минимальному сечению провода, который используется в проводке.
Например, допустимый ток для медного провода сечением 1,5 кв. мм, составляет 19 ампер. Значит, для данного провода выбираем ближайшее значение номинального тока автомата в меньшую сторону, составляющее 16 ампер. Если выбрать автомат со значением 25 ампер, то проводка будет греться, так как провод данного сечения не предназначен для такого тока. Чтобы правильно произвести расчет автоматического выключателя, необходимо, в первую очередь, учитывать сечение провода.
Расчет вводного автоматического выключателя
Система электропроводки делится на группы. Каждая группа имеет свой кабель с определенным сечением и автоматические выключатели с номинальным током удовлетворяющему этому сечению.
Чтобы выбрать сечение кабеля и номинальный ток автомата, нужно произвести расчет предполагаемой нагрузки. Этот расчет производят, суммируя мощности приборов, которые будут подключены к участку. Суммарная мощность позволит определить ток, протекающий через проводку.
Определить величину тока можно по следующей формуле:
- Р — суммарная мощность всех электроприборов, Вт;
- U — напряжение сети, В (U=220 В).
Несмотря на то, что формула применяется для активных нагрузок, которые создают обычные лампочки или приборы с нагревательным элементом (электрочайники, обогреватели), она все же поможет приблизительно определить величину тока на данном участке. Теперь нам нужно выбрать токопроводящий кабель. Зная величину тока, мы по таблице сможем выбрать сечение кабеля для данного тока.
После этого можно производить расчет автоматического выключателя для электропроводки данной группы. Помните, что автомат должен отключиться раньше, чем произойдет перегрев кабеля, поэтому номинал автомата выбираем ближайшее меньшее значение от расчетного тока.
Смотрим на величину номинального тока на автомате и сравниваем ее с максимально допустимой величиной тока для провода с данным сечением. Если допустимый ток для кабеля меньше, чем номинальный ток, указанный на автомате, выбираем кабель с большим сечением.
Расчет токовой нагрузки и выбор автомата защиты в однофазной электросети,220 вольт для группы электропроводки
Под группой электропроводки понимается несколько потребителей подключенных параллельно к одному питающему кабелю от электрощитка. Для группы электропроводки устанавливается общий автомат защиты. Автомат защиты устанавливается в квартирном электрощитке или этажном щитке. Расчет сети группы потребителей отличается от расчета сети одиночного потребителя.
Для расчета токовой нагрузки группы потребителей вводится так называемый коэффициент спроса. Коэффициент спроса (Кс) определяет вероятность одновременного включения всех потребителей в группе в течение длительного промежутка времени. Кс=1 соответствует одновременной работе всех электроприборов группы. Понятно, что включение и работа всех электроприборов в квартире практически не бывает. Есть целые системы расчета коэффициента спроса для домов, подьездов. Для каждой квартиры коэффициент спроса различается для отдельных комнат, отдельных потребителей и даже для различного стиля жизни жильцов. Например, коэффициент спроса для телевизора обычно равен 1,а коэффициент спроса пылесоса равен 0,1.
Поэтому для расчета токовой нагрузки и выбора автомата защиты в группе электропроводки коэффициент спроса влияет на результат. Расчетная мощность группы электропроводки рассчитывается по формуле:
- P(расчетная)=К(спроса)×P(мощность установочная).
- I (ток нагрузки)=Р (мощность расчетная)÷220 вольт.
Пример: В таблице ниже рассмотрим электроприборы, входящие в одну группу. Рассчитаем токовую нагрузку для этой группы и выберем автомат защиты с учетом коэффициента спроса.Коэффицмент спроса в примере выбирается индивидуально:
Расчет автоматического выключателя для насоса
На замену плавким предохранителям еще два столетия назад пришли автоматические выключатели. С 1924 года патент на это изобретение принадлежит швейцарской компании Brown , Boveri & Cie .
Преимущества АВ над плавкими вставками:
— плавкий предохранитель выходит из строя после первого своего срабатывания, то есть многократное его использование невозможно, необходима замена сгоревшей плавкой части;
— при использовании в трехфазной цепи, короткое замыкание в одной фазе вызовет перегорание одного предохранителя, в то время как две другие фазы будут продолжать работать. Аварийный режим работы (обрыв фазы) исключается АВ, так как к.з. в одной фазе трехполюсного выключателя приводит к разрыву всей цепи.
Автоматический выключатель (АВ) – это электромеханический коммутационный аппарат, который позволяет включать и отключать питание потребителя при нормальном режиме работы. А так же обеспечивает защиту электрооборудования от токов короткого замыкания и перегрузки (перегревания). Частое отключения в ручном режиме нежелательно, так как АВ имеют заявленное число коммутаций (для этого лучше использовать более дешевые рубильники).
Для того чтобы правильно выбрать автоматический выключатель, необходимо понимать его основные параметры и характеристики:
Номинальный ток автомата ( I н ) – величина тока, на которую АВ рассчитан для длительной нормальной работы. Иногда показатель I н имеет определенный диапазон и регулятор для точной настройки. Например, I н =3 ÷ 5А, это означает, что данный автоматический выключатель можно подстроить на рабочие токи от 3 до 5 А. При превышении указанного значения происходит срабатывание защиты и электрическая цепь разрывается. По нормам, срабатывание должно произойти при силе тока в 1,45 I н .
Тип автоматического выключателя определяет кратковременное значение силы тока, при котором произойдет разрыв цепи. Тип или класс, в основном, определяется для момента включения. При запуске электрооборудования имеют место пусковые токи, которые могут быть огромными. Например, при прямом пуске электродвигателя, начальный ток равен 10-ти номинальным. Основные типы:
— B (кратковременное увеличение тока в 3-5 раз от номинального); |
— C (5-10 раз); |
— D (10-50 раз). |
Время срабатывания (от момента, когда контролируемый параметр стал больше предельного значения, до момента размыкания контактов). АВ по времени срабатывания делятся на:
— нормальные (t=0,02-0,1с); |
— быстродействующие (0,005с); |
— селективные (предел регулирования времени срабатывания до 1с) |
Последние имеют контакты с задержкой на размыкание. Применяются в сложных цепях, селективный АВ устанавливают на входе потребителя большой мощности. После него на разветвлениях цепи стоят автоматы меньшей мощности. Таким образом, при создании аварийной ситуации на участке цепи – выключится лишь отдельное оборудование, а селективность позволит остальной системе остаться работоспособной.
Отключающая способность – это максимальный ток, который может присутствовать кратковременно в цепи, чтобы автоматический выключатель не потерял свою работоспособность (возможно сваривание контактов при превышающих норму токах). Это значение обычно в сотню раз больше рабочего тока. А возникает такой огромный ток при коротком замыкании.
Механизмы расцепления
Тепловая отсечка (длительное влияние тока, превышающего норму) выполняется благодаря пластине, которая состоит из двух разных металлов. У используемых металлов разная тепловая проводимость. Пластина подсоединена последовательно, то есть через нее протекает ток цепи. Когда значение тока номинальное или меньше – автомат остается в замкнутом состоянии. Если же ток превысит нормированное значение, пусть даже на 10% в течении длительного времени, пластина нагреется и изогнется, тем самым, разорвет контакт питающей цепи.
Электромагнитное расцепление обеспечивает защиту от больших, резких скачков тока. Эта отсечка выполняется встроенным соленоидом. К примеру, автоматический выключатель рассчитан на ток в 2 А, его тип В, следовательно сработать он должен при токе 10 А. Для этого и служит соленоид. При токах до 10А, он будет неподвижным, а при достижении 10А, соленоид втянется и разомкнет контакт – произойдет выключение автомата.
Строение
На рисунке ниже показаны основные элементы, из которых состоит автоматический выключатель.
1 – соленоид выполняет функцию расцепления при коротком замыкании; |
2 – зажимной винтовой контакт для подсоединения провода; |
3 – дугогасительная камера рассеивает дугу, которая возникает в следствии коммутации (соединение/разъединение) контактов; |
4 – подвижный контакт; |
5 – биметаллическая пластина для защиты от перегрузки (длительного повышенного тока). |
Функции независимого расцепления (НР), расцепление по нулевому напряжению (НРН) и по минимальному напряжению (МРН) выступают дополнительными, и не включаются в стандартные комплекты поставки (необходимо заказывать сборочные единицы).
Выше показано одно из многочисленных исполнений АВ. Существует широкое их разнообразие. Например, по роду тока, количеству подключаемых фаз, расположению клемм. Но это все конструктив, а мы описываем как это работает.
Обозначение автоматического выключателя на электрической схеме:
Онлайн расчет автоматического выключателя
Выбор по току . Если Вы хотите в квартире, гараже, на даче поставить АВ. Следовательно, проводка уже проложена и ее сечение Вам известно, тогда нужно обратиться к таблице, где указаны сечения проводов и соответствующие для них максимальные токи. Прочесть подробнее о выборе сечения проводника будет полезным для установки автомата.
Например, у меня дома в стенах проложен алюминиевый провод сечением 2,5 мм 2 .
Для открыто проложенного алюминиевого кабеля сечением 2,5мм 2 максимальный ток – 24А. Но, так как он проложен скрытно, его охлаждение будет хуже, чем на открытом воздухе. Для этого выбранное значение умножаем на поправочный коэффициент для скрытой прокладки 0,8.
Максимальный ток, который выдержит проводка:
![]() |
Автомат предназначен, чтоб обеспечить защиту не только электроприборов, но и для сохранения целостности проводника. Ведь, согласитесь, искать внутри стен, где перегорела проводка – не самое веселое занятие. Потому нужно выбрать автоматический выключатель с номинальным током, ниже, чем у провода. Из стандартного ряда, автомат на 16А будет подходящим и сохранит целостность проводов и приборов.
Выбор по мощности . Если нам необходимо подключить несколько потребителей электроэнергии, и мы знаем лишь их мощность. Две лампочки накаливания на 100Вт и один асинхронный электродвигатель на 2кВт. Напряжение сети – переменное 220В.
Для лампочек накаливания подсчет будет прост, из формулы активной мощности Р= UI , выразим и найдем значение тока:
![]() |
А вот с электродвигателем существует нюанс. Так как он является не только активной, но и реактивной нагрузкой, косинус фи вносит изменение в наш расчет. Коэффициент мощности указывается на шилдике (табличке) двигателя, но если такой отсутствует, смело принимайте значение 0,7. Итак, ток через двигатель будет равен:
![]() |
Выбор автоматического выключателя будет по сумме этих токов (14А), но с небольшим запасом. Выбираем , снова таки, 16 амперный автомат.
Для трехфазной сети, выбор автоматического выключателя по мощности осуществляется по формуле:
Расчет автоматических выключателей
Автоматы (автоматические выключатели) предназначены для защиты цепей электрического тока – вашей электропроводки от перегрузок и короткого замыкания. Это хорошая альтернатива устаревшим на сегодняшний день пробкам, автоматическим пробкам, которые проигрывают как в безопасности и надежности, так и в качестве и долговечности.
Для выбора автоматического выключателя необходимо произвести расчет параметров автомата.
Расчет автоматического выключателя заключается в определении номинального тока автомата наряду с время-токовой характеристики автомата.
Выбор количества полюсов автомата не является расчетным показателем, а принимается исходя из схемы подключения питания.
При расчете автомата необходимо помнить, что назначением автоматических выключателей является защита линий питания от разрушения электрическим током, превышающим расчетное значение для данной конкретной проводки. Иными словами, можно сказать, что при проведении расчета автоматического выключателя необходимо учитывать не столько мощность подключаемых к проводке нагрузок, сколько разрешенный для линии питания рабочий ток и токи, возникающие при включении нагрузок, называемые пускоывми токами.
При рассчете номинального тока автомата во внимание принимается рабочий ток электропроводки и применяется таблица расчета автомата защиты, в соответствии с сечение провода и его материалом для определения номинального тока автомата. При выборе время токовой характеристики учитываются пусковые токи подключаеых нагрузок.
Расчет тока автомата
Как было указано выше, при расчете тока автоматического выключателя — автомата, учитывается сила тока, допускаемая для нормальной и безопасной работы конкретной линии питания, защищаемой автоматическим выключателем. То есть для расчета номинала автомата нужно знать максимальный рабочий ток линии линии питания, а не мощность и силу тока подключаемых нагрузок. Можно сказать и по другому: Расчёт тока по мощности нагрузок может производиться только в случае соответствия электропроводки мощностям назгузки. Часто применяемый расчёт тока автомата по суммарной мощности нагрузок не уситывает то, что автоматический выключатель в первую очереди предназначен для защиты линий электропитания, а не нагрузки.
Так как документация на электропроводку обычно отсутствует и документально определить, на какой ток проводка была рассчитана не представляется возможным, то номинальный рабочий ток проводки можно вычислить по сечению проводящей жилы провода. В зависимости от площади сечения проводника, материала проводника (медь или аллюминий), а так же способа прокладки проводки (открытая, скрытая в стене, в лотке, в трубе или в земле) провод может выдержать разные токи без перегрева.
Сечение провода зависит от диаметра проводника (является функцией диаметра проводника круглого сечения). Диаметр проводника можно измерить микрометром или штангельциркулем и рассчитать сечение проводника по диаметру с помощю формулы: S≈0,785*D2, где S — это площадь сечения проводника в миллиметрах квадратных (мм2), а D — это диаметр проводника в миллиметрах (мм). ВАЖНО — нужно измерять диаметр только проводящей жилы, а не диаметр провода вместе с изоляцией, который будет больше и при рассчете даст неверный результат рабочего тока электро проводки.
Используя результат измерения диаметра жилы провода и прилагаемые таблицы в зависимости от материала проводки, левая для медных жил и правая для аллюминиевых жил, определяем допустимый ток для проводки.
Определяя допустимый ток проводки следует учитывать, что приведенные таблицы указывают ток для скрытой проводки, кроме того, видно что при наиболее распространенном виде проводки (один двухжильный провод), допустимый ток немного больше чем при использовании трехжильного провода. Это связано с тем, что рабочий ток проводки ограничивается температурой, до которой нагревается провод при протекании по нему тока. В случае трехжильной проводки теплоотдача провода снижается по сравнению с двухжильным проводом и допустимый рабочий ток так же снижается по сравнению с двухжильным проводом. Так же можно отметить, что в случае одного одножильного провода допустимый рабочий ток проводки немного увеличится по сравнению с двухжильным проводом.
После определения рабочего тока проводки, подбираем номинал тока автомата, который эту проводку будет защищать. Номинал автомата выбирается либо равным либо меньшим рабочего тока проводки. Иногда используют автомат с номиналом немного превышающим рабочий ток проводки.
Выбор характеристической кривой
Кроме номинала автомата выбирается так же время-токовая характеристика, кривая автомата, зависящая от подключаемых к проводке нагрузок, вернее от их пусковых токов. В приведенной таблице указаны кратности пусковых токов некоторых электрориборов и их продолжительность.
Исходя из указанных кратностей пускового тока и известного тока электроприбора можно определить какой силы в амперах достигнет ток в сети при включении прибора и сколько такой повышенный ток будет продолжаться. Например, зная, что мощность электромясорубки составляет 1,5кВт, то есть рабочий ток будет равен 6,81 Ампер, и учитывая кратность пускового тока до 7 раз получам ток в 48А!, и такой ток может течь в цепи на протяжении 1 — 3 секунд. Если автоматический выключатель, установленный для защиты линии, от которой питается эта мясорубка, B16, то посмотрев на время токовую характеристику B мы увидим, что он может сработать по перегрузки во время включения мясорубки, так как трехкратное превышение 16 Ампер как раз равно 48-и амперам, в связи с чем для защиты этой линии лучше использовать C16, у которого срабатывание от кратковременного превышения, в соответствии с характеристической кривой C начинается с 16 Х 5 = 80 Ампер.
Несмотря на то, что в таблице присутствуют и большие кратности токов, например у блоков питания, где зарядка электролитических конденсаторов создает пусковой ток вплоть до 10-и кратного, мощность таких приборов обычно невелика и продолжительность такого тока достаточно мала, что обычно не создает угрозы пускового отключения автомата.
В жилых помещениях для розеточной группы обычно устанавливают автоматы
номиналом 25 Ампер, для осветительной группы – 16 Ампер. Эти автоматы
гарантированно сработают при возникновении в сети длительно
действующих больших токов (коротких замыканий) и имеют неплохой «запас»
по амперажу, чтобы выдерживать кратковременные увеличения пусковых
токов.
Калькулятор мощности – расчет по току, напряжению, сопротивлению
С помощью калькулятора мощности вы можете самостоятельно выполнить расчет мощности по току и напряжению для однофазных (220 В) и трехфазных сетей (380 В). Программа также рассчитывает мощность через сопротивление и напряжение, или через ток и сопротивление согласно закону Ома. Значение cos φ принимается согласно указаниям технического паспорта прибора, усредненным значениям таблиц ниже или рассчитываются самостоятельно по формулам. Без необходимости рекомендуем не изменять коэффициент и оставлять равным 0.95. Чтобы получить результат расчета, нажмите кнопку «Рассчитать».
Смежные нормативные документы:
- СП 256.1325800.2016 «Электроустановки жилых и общественных зданий. Правила проектирования и монтажа»
- СП 31-110-2003 «Проектирование и монтаж электроустановок жилых и общественных зданий»
- СП 76.13330.2016 «Электротехнические устройства»
- ГОСТ 31565-2012 «Кабельные изделия. Требования пожарной безопасности»
- ГОСТ 10434-82 «Соединения контактные электрические. Классификация»
- ГОСТ Р 50571.1-93 «Электроустановки зданий»
Формулы расчета мощности
Мощность — это физическая величина, равная отношению количества работы ко времени совершения этой работы.
Мощность электрического тока (P) — это величина, характеризующая скорость преобразования электрической энергии в другие виды энергии. Международная единица измерения — Ватт (Вт/W).
— Мощность по току и напряжению (постоянный ток): P = I × U
— Мощность по току и напряжению (переменный ток однофазный): P = I × U × cos φ
— Мощность по току и напряжению (переменный ток трехфазный): P = I × U × cos φ × √3
— Мощность по току и сопротивлению: P = I 2 × R
— Мощность по напряжению и сопротивлению: P = U 2 / R
- I – сила тока, А;
- U – напряжение, В;
- R – сопротивление, Ом;
- cos φ – коэффициент мощности.
Расчет косинуса фи (cos φ)
φ – угол сдвига между фазой тока и напряжения, причем если последний опережает ток сдвиг считается положительным, если отстает, то отрицательным.
cos φ – безразмерная величина, которая равна отношению активной мощности к полной и показывает насколько эффективно используется энергия.
Формула расчета косинуса фи: cos φ = S / P
- S – полная мощность, ВА (Вольт-ампер);
- P – активная мощность, Вт.
Активная мощность (P) — реальная, полезная, настоящая мощность, эта нагрузка поглощает всю энергию и превращает ее в полезную работу, например, свет от лампочки. Сдвиг по фазе отсутствует.
Формула расчета активной мощности: P (Вт) = I × U × cos φ
Реактивная мощность (Q) — безваттная (бесполезная) мощность, которая характеризуется тем, что не участвует в работе, а передается обратно к источнику. Наличие реактивной составляющей считается вредной характеристикой цепи, поскольку главная цель существующего электроснабжения — это сокращение издержек, а не перекачивание ее туда и обратно. Такой эффект создают катушки и конденсаторы.
Формула расчета реактивной мощности: P (ВАР) = I × U × sin φ
Полная мощность электроприбора (S) — это суммарная величина, которая включает в себе как активную, так и реактивную составляющие мощности.
Формула расчета полной мощности: S (ВА) = I × U или S = √( P 2 + Q 2 )