Gc-helper.ru

ГК Хелпер
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Расцепитель автоматического выключателя характеристика по температуре

Время-токовые характеристики автоматических выключателей (В, С, D)

Время-токовые характеристики автоматических выключателей (В, С, D)

Вы наверное замечали, что на корпусах модульных автоматов изображены латинские буквы: B, C или D. Так вот они обозначают время-токовую характеристику этого автомата, или другими словами, ток мгновенного расцепления.

Согласно ГОСТ это наименьшая величина тока, при котором автоматический выключатель сработает (отключится) без выдержки времени, т.е. это его электромагнитная защита. В этом же ГОСТ говорится, что всего существует три стандартные характеристики (типы мгновенного расцепления):

B — электромагнитный расцепитель (ЭР) срабатывает в пределах от 3 до 5-кратного тока от номинального (3·In до 5·In)

C — электромагнитный расцепитель (ЭР) срабатывает в пределах от 5 до 10-кратного тока от номинального (5·In до 10·In)

D — электромагнитный расцепитель (ЭР) срабатывает в пределах от 10 до 20-кратного тока от номинального (10·In до 20·In, но встречаются иногда и 10·In до 50·In)

In – номинальный ток автоматического выключателя, тот что указан на корпусе.

Рассмотрим каждый вид характеристики более подробно на примере модульных автоматических выключателей серии ВА47-29 от производителя ИЕК.

Время-токовая характеристика типа В

Рассмотрим время-токовую характеристику В на примере автоматических выключателей ВА47-29.

Вот график время-токовой характеристики (сокращенно, ВТХ) типа В:

На нем показана зависимость времени отключения автоматического выключателя от протекающего через него тока. Ось Х — это кратность тока в цепи к номинальному току автомата (I/In). Ось У — время срабатывания, в секундах. Время-токовые характеристики практически всех автоматов изображаются при температуре +30°С.

График разделен двумя линиями, которые и определяют разброс времени срабатывания зон теплового и электромагнитного расцепителей автомата. Верхняя линия — это холодное состояние, т.е. без предварительного пропускания тока через автомат, а нижняя линия — это горячее состояние автомата, который только что был в работе или сразу же после его срабатывания. Пунктирная линия на графике — это верхняя граница (предел) для автоматов с номинальным током менее 32 А.

  1. Токи условного нерасцепления (1,13·In)

У каждого автомата есть такое понятие, как «условный ток нерасцепления» и он всегда равен 1,13·In. При таком токе автомат не отключится в течение 1 часа (для автоматов с номинальным током менее 63А) и в течение 2 часов (для автоматов с номинальным током более 63А). Точку условного нерасцепления автомата (1,13·In) всегда отображают на графике. Если провести прямую, то видно, что прямая уходит как бы в бесконечность и с нижней линией графика пересекается в точке 60-120 минут. Например, автомат с номинальным током 10 А. При протекании через него тока 1,13·In = 11,3 А его тепловой расцепитель не сработает в течение 1 часа. Еще пример, автомат с номинальным током 16 А. При протекании через него тока 1,13·In = 18,08 А его тепловой расцепитель не сработает в течение 1 часа.

Вот значения «токов условного нерасцепления» для различных номиналов:

  • 10 А – 11,3 А
  • 16 А – 18,08 А
  • 20 А – 22,6 А
  • 25 А – 28,25 А
  • 32 А – 36,16 А
  • 40 А – 45,2 А
  • 50 А – 56,5 А
  • 63 А – 71,2 А
  1. Токи условного расцепления (1,45·In)

Есть еще понятие, как «условный ток расцепления» автомата и он всегда равен 1,45·In. При таком токе автомат отключится за время не более 1 часа (для автоматов с номинальным током менее 63А) и за время не более 2 часов (для автоматов с номинальным током более 63А). Кстати, точку условного расцепления автомата (1,45·In) практически всегда отображают на графике. Если провести прямую, то видно, что прямая пересекает график в двух точках: нижнюю линию в точке 40 секунд, а верхнюю — в точке 60-120 минут (в зависимости от номинала автомата).

Таким образом, автомат с номинальным током 10 А в течение часа, не отключаясь, может держать нагрузку порядка 14,5 А, а автомат с номинальным током 16 А — порядка 23,2 А. Но это при условии, что автоматы изначально были в холодном состоянии, в ином случае время их отключения будет находиться в пределах от 40 секунд до одного часа.

Вот значения «токов условного расцепления» для различных номиналов:

  • 10 А – 14,5 А
  • 16 А – 23,2 А
  • 20 А – 29 А
  • 25 А – 36,25 А
  • 32 А – 46,4 А
  • 40 А – 58А
  • 50 А – 72,5 А
  • 63 А – 91,4 А

Вот об этом не стоит забывать при выборе сечения проводов и кабелей для электропроводки. Представьте себе, что кабель сечением 2,5 кв.мм Вы защищаете автоматом на 25 А. Вдруг по некоторым причинам Вы перегрузили линию до 36 А. Автомат 25 А может не отключаться в течение целого часа, а по кабелю будет идти ток, который в значительной мере превышает его длительно-допустимый ток – 25 А. За это время кабель сильно нагреется и может расплавиться, что может привести к пожару или короткому замыканию. А если еще учесть то, что в последнее время многие производители кабельной продукции преднамеренно занижают сечения жил, то ситуация тем более усугубляется.

Допустимые токи для проводов различного сечения приведены в таблице

Можно рекомендовать защищать кабели следующим образом:

  • 1,5 кв.мм — защищаем автоматом на 10 А
  • 2,5 кв.мм — защищаем автоматом на 16 А
  • 4 кв.мм — защищаем автоматом на 20 А и 25 А
  • 6 кв.мм — защищаем автоматом на 25 А и 32 А
  • 10 кв.мм — защищаем автоматом 40 А
  • 16 кв.мм — защищаем автоматом 50 А

Для удобства все данные сведем в одну таблицу:

  1. Срабатывание теплового расцепителя при токе 2,55·In

Согласно ГОСТ , если через автоматический выключатель будет проходить ток, равный 2,55·In, то он должен отключиться за время не менее 1 секунды из горячего состояния и не более 60 секунд из холодного состояния (для автоматов с номинальным током менее 32А) и не более 120 секунд из холодного состояния (для автоматов с номинальным током более 32А). На графике Вы можете видеть, что нижний предел по отключению взят с небольшим запасом, т.е. не 1 секунду, а 4 секунды. На то есть право у производителей автоматов. Вот поэтому они всегда к каждому автомату прикладывают свою ВТХ, которая, естественно, что удовлетворяет всем требованиям ГОСТ.

  1. Срабатывание электромагнитного расцепителя при токе 3·In

Согласно ГОСТ, если через автоматический выключатель будет проходить ток, равный 3·In, то он должен отключиться за время не менее 0,1 секунды. Верхний предел по времени не определен, и у автоматов разных производителей здесь может наблюдаться небольшой разброс в пределах от 1 до 10 секунд. При токе 3·In электромагнитный расцепитель может еще не сработать и по факту автомат отключается от теплового расцепителя. Вот именно поэтому измеренное значение петли фаза-ноль сравнивают с током не 3·In, а с 5·In, учитывая коэффициент 1,1. Автомат ВА47-29 с номинальным током 10 А при токе 30 А должен отключиться за время не менее 0,1 секунды.

  1. Срабатывание электромагнитного расцепителя при токе 5·In

Согласно ГОСТ, если через автоматический выключатель будет проходить ток, равный 5·In, то он должен отключиться за время менее 0,1 секунды. Автомат ВА47-29 с номинальным током 10 А при токе 50 А должен отключиться за время менее 0,1 секунды.

Автоматы с характеристикой В применяются для защиты распределительных и групповых цепей с большими длинами кабелей и малыми токами короткого замыкания преимущественно с активной нагрузкой, например, электрические печи, электрические нагреватели, цепи освещения. Но почему-то в магазинах их количество всегда ограничено, т.к. по мнению продавцов наиболее распространенными являются автоматы с характеристикой С. С чего это вдруг?! Вполне логично и целесообразно для групповых линий цепей освещения и розеток применять именно автоматы с характеристикой типа В, а в качестве вводного автомата устанавливать автомат с характеристикой С (это один из вариантов). Так хоть каким-то образом будет соблюдена селективность, и при коротком замыкании где-нибудь в линии вместе с отходящим автоматом не будет отключаться вводной автомат и «гасить» всю квартиру. Но о селективности я еще расскажу Вам более подробно в другой раз.

Читать еще:  Выключатель электрический фаза или ноль

Время-токовая характеристика типа С

1. Токи условного нерасцепления (1,13·In) и Токи условного расцепления (1,45·In)

По графику видно, что в зоне срабатывания теплового расцепителя все аналогично характеристики В, так же видим условный ток нерасцепления равеный 1,13·In и условный ток расцепления равеный 1,45·In. Их значения для различных номиналов автоматов характеристики С совпадает с аналогичными значениями автоматов характеристики В. Отличия начинаются в зоне срабатывания электромагнитного расцепителя

  1. Срабатывание теплового расцепителя при токе 2,55·In

Согласно ГОСТ , если через автоматический выключатель будет проходить ток, равный 2,55·In, то его тепловой расцепитель должен сработать за время не менее 1 секунды и не более 60 секунд для автоматов с номинальным током ≤ 32 А, или не менее 1 секунды и не более 120 секунд для автоматов с номинальным током > 32 А.

  1. Срабатывание электромагнитного расцепителя при токе 5·In

Согласно ГОСТ, если через автоматический выключатель будет проходить ток, равный 5·In, то он должен отключиться за время не менее 0,1 секунды. Верхний предел по времени не определен, и у автоматов разных производителей здесь может наблюдаться не большой разброс в пределах от 1 до 10 секунд.

  1. Срабатывание электромагнитного расцепителя при токе 10·In

Согласно ГОСТ,если через автоматический выключатель будет проходить ток, равный 10·In, то он должен отключиться за время менее 0,1 секунды.

Автоматы с характеристикой С применяются в основном для защиты трансформаторов и двигателей с малыми пусковыми токами. Также их можно использовать для питания цепей освещения. Это, наверное, одна из самых распространенных и применяемых характеристик в жилом секторе, хотя порой ее применение не всегда оправдано.

Время-токовая характеристика типа D

По графику видно, что, как и в случае характеристики С, отличия от характеристики В начинаются в зоне срабатывания электромагнитного расцепителя. Тепловой расцепитель ведет себя одинаково во всех случаях.

  1. Токи условного нерасцепления (1,13·In) и токи условного расцепления (1,45·In) полностью аналогичны таковым для характеристик В и С,
  2. Если через автоматический выключатель будет проходить ток, равный 2,55·In, то он должен отключиться за время не менее 1 секунды в горячем состоянии и не более 60 секунд в холодном состоянии (для автоматов с номинальным током менее 32А) и не более 120 секунд в холодном состоянии (для автоматов с номинальным током более 32А).
  3. Если через автоматический выключатель будет проходить ток, равный 10·In, то он должен отключиться за время не менее 0,1 секунды.
  4. Если через автоматический выключатель будет проходить ток, равный 20·In, то он должен отключиться за время менее 0,1 секунды.

Автоматы с характеристикой D применяются в основном для защиты электрических двигателей с частыми запусками или значительными пусковыми токами (тяжелый пуск).

Изменение характеристик расцепления автоматов

Как мы уже говорили в начале, все характеристики автоматов изображаются при температуре окружающего воздуха +30°С. Поэтому, чтобы узнать время отключения автоматов при других температурах, необходимо учитывать следующие поправочные коэффициенты:

  1. Температурный коэффициент окружающего воздуха — Кt.

Думаю тут все понятно из графика. Чем ниже температура воздуха, тем значение коэффициента больше, а значит и увеличивается номинальный ток автомата, другими словами, его нагрузочная способность. Или, наоборот, чем жарче, тем нагрузочная способность автомата становится меньше. Ведь не зря, в жарких помещениях или летнюю жару многие замечают частые отключения автоматов, хотя нагрузка вовсе не изменялась. Ответ кроется в этом графике.

  1. Коэффициент, учитывающий количество рядом установленных автоматов — Кn.

Здесь тоже никаких премудростей нет. Когда в одном ряду установлено несколько автоматов, то они передают свое тепло рядом стоящим автоматам. Этот график учитывает конвекцию тепла и выдает корректирующий коэффициент, учитывающий этот фактор. Логика проста. Чем больше в ряду автоматов, тем больше уменьшается их нагрузочная способность.

Далее необходимо найти ток, приведенный к условиям нашего окружающего воздуха и монтажа:

In* = In · Кt · Кn

Как эти два коэффициента применить на практике?

Для этого рассмотрим пример. Щиток стоит на улице, в нем установлены 4 автомата — один вводной (ВА47-29 С40) и три групповых (ВА47-29 С16). Температура окружающего воздуха составляет -10°С.

Найдем поправочные коэффициенты для группового автомата ВА47-29 С16:

Найдем ток, приведенный к нашим условиям:

In* = In · Кt · Кn = 16 · 1,1 · 0,82 = 14,43 А

Таким образом, при определении времени срабатывания автомата по характеристике С кратность тока нужно брать не как отношение I/In (I/16), а как I/In* (I/14,43).

Заключение

Как видите, разницей между время-токовыми характеристиками В, С и D являются только значения срабатывания электромагнитного расцепителя. По тепловой защите они работают в одних интервалах времени. Можно сказать, что характеристики отличаются током срабатывания электромагнитного расцепителя как D > C > B. Срабатывание за время менее 0,1 сек для характеристики В вызывает ток 5* In, для С – 10* In, для D – 50* In. Таким образом видно, что для бытового применения подходят автоматы с характеристикой В, автоматы с характеристикой С также можно использовать, но, желательно как входные или там, где есть электромоторы с большими пусковыми токами. Характеристика D не пригодна для бытового применения.

Расцепитель автоматического выключателя

Автоматический выключатель устанавливается в электрических цепях. Он спасает бытовые приборы от скачков напряжения, перегрузок сети и коротких замыканий. Отключает подачу напряжения расцепитель автоматического выключателя, которым сейчас оборудован каждый автомат. Роль этого приспособления очень велика, поэтому используется оно повсеместно – от простых щитков многоквартирных домов до электрощитового оборудования, обеспечивающего функционирование крупных заводов.

Из-за чего срабатывает расцепляющий элемент независимого типа

Срабатывает автоматический выключатель с независимым расцепителем обычно при неисправности автомата, например, если не фиксируется переключатель. Также срабатывание происходит при резком превышении предела нагрузки силы тока, на которую рассчитан кабель, при резком снижении или увеличении напряжения и коротких замыканиях, порождающих сверхтоки. Расщепляющий элемент срабатывает и при утечке тока в корпус подключенного к сети прибора или на «землю» при его неисправности.

Независимый расцепитель для автоматических выключателей

Элементы, обеспечивающие дополнительную защиту электрической цепи — это независимые расцепители. Именно благодаря им происходит самостоятельное выключение автоматов или нагрузочных выключателей.

Наибольшее распространение они получили при создании вентиляционных шахт, обеспечивая выключение вентиляционной системы при задымлении или пожаре. Они подключаются к автоматам в щитах, обеспечивающих функционирование вентиляции. При возникновении внештатной ситуации устройства централизованно блокируют поступление электропитания на распределительные щиты вентиляции, предотвращая распространение задымления и угарного газа по этажам здания.

Общее устройство расцепителя и схема его подключения

Любой расцепитель — это приспособление для отключения защитного аппарата цепи. Используются же расцепители в основе всех автоматических выключателей.

При поступлении импульса на конструкцию автомата рычаг давит на механизм, обеспечивающий выключение автоматического защитного устройства и тем самым прерывает подачу электричества, предохраняя линии от выгорания.

Стандартная схема подключения расцепителя проста — его подсоединяют к вводному автомату, чтобы при возникновении внештатной ситуации имелась возможность моментально обесточить щиток полностью и предохранить питаемые им устройства от выгорания.

Расцепители, их типы и назначения

В автоматическом выключателе устанавливаются разные типы расцепителей. Обычно используют электромагнитный и тепловой. Еще применяются автоматические выключатели с комбинированным расцепителем, отличающиеся повышенной надежностью и долговечностью.

Тепловой расцепитель хорошо справляется с перегрузами энергосети, электромагнитный – моментально реагирует на сверхтоки, а комбинированный расцепитель объединяет в себе оба свойства, но все выполняют одну функцию – аварийное отключение напряжения в системе.

Также существуют расцепители минимального напряжения, принцип работы которых основан на отключении автомата при понижении тока ниже нормы.

Тепловой расцепитель автоматического защитного выключателя

Главным элементом данного расцепителя является пластинка, сплавленная из нескольких металлов с разным термическим расширением.

При нагреве пластины металлы, из которых она сплавлена, расширяются с различной скоростью. Это ведет к деформации пластинки, и если ток не выравнивается после определенного времени, пластина искривляется настолько серьезно, что касается контактов, разрывая цепь и прекращая подачу электричества.

Самая частая причина нагрева – высокая нагрузка на линию, защищаемую выключателем, например, одновременное подключение микроволновки, кофемашины, чайника и холодильника в одну цепь.

Огромный минус теплового расцепителя в том, что он срабатывает не мгновенно, так как требуется время на нагрев пластинки. Из-за этого он не спасет от сверхтока, однако хорошо справляется с перегрузом сети.

Автоматы с электромагнитным расцепителем

Чтобы оперативно отключить сразу несколько линий при образовании короткого замыкания, применяется электромагнитный расцепитель, представляющий собой индукционную катушку. Внутри этой катушки находится сердечник. При работе системы в стандартном режиме, ток в катушке не создает сильного магнитного поля и никак не влияет на положение сердечника. Но когда происходит короткое замыкание, сила тока многократно возрастает за миллисекунды, и под влиянием увеличившейся силы магнитного поля сердечник моментально двигается в сторону, оказывая давление на механизм выключения автомата.

Читать еще:  Проходной выключатель шнайдер электрик седна

Сила тока при замыкании возрастает мгновенно, что ведет к такому же моментальному срабатыванию приспособления. Быстрое отключение энергосети дает возможность избежать тяжелых повреждений от сверхтоков.

Проверка работоспособности расцепителя

Тестирование расцепителей всех трех типов проводится с помощью воздействия первичного тока от независимого источника, как при установке автомата, так и регулярно на всем сроке его эксплуатации. Выключатели проверяются в одно и то же время с другим защитным оборудованием.

Основным параметром при проверке является соответствие заявленных параметров механизма с его техническими показателями в момент испытания. Первое, что проверяют при оценке работоспособности, — время, прошедшее от начала подачи критической нагрузки на автомат до расцепления цепи. Параметры нормального временного диапазона указываются производителем в приложенных к устройству технических документах. В случае несоответствия нормам выключатели заменяются на новые.

Такие проверки необходимы, для того чтобы обеспечить стабильную и безопасную работу устройства, и пренебрежение ими может стать фатальным.

Как проверить работоспособность и исправность расцепителя

Тестирование расцепителя должен проводить только опытный специалист с применением специального оборудования. Не стоит ее делать в домашних условиях – это может быть опасно. При неверной оценке работоспособности расцепителя существует риск замыкания, которое может обернуться пожаром.

  1. При проверке для начала осматривается корпус устройства. На нем не должно быть дефектов, таких как сколы, трещины, вмятины и так далее.
  2. Затем проверяют исправность рычажка — он должен свободно ходить и фиксироваться во всех положениях. Для этого делают несколько щелчков выключателем.
  3. Только после тщательной визуальной оценки механизм нагружают, искусственно создавая с помощью специального прибора условия, при которых выключатель должен сработать, и засекают время его срабатывания независимого расцепителя.
  4. После этого точно такую же процедуру производят с прибором после снятия с него корпуса.

Главным критерием при тестировании работоспособности расцепителя является время от нагрузки автомата до отключения. Оно не должно превышать значение, указанное производителем.

При выборе автомата нужно обязательно обратить внимание на вид расцепителя, который в нем установлен. Хоть они и выполняют одну функцию, им требуется разное время на ее выполнение.

Чтобы быстро и безошибочно выбрать выключатель для дома необходимо:

  1. Покупать автомат с комбинированным расцепителем.
  2. Убедиться, что номинальный ток расцепителя был равен напряжению в сети.
  3. Сопротивление автомата должно быть равно сопротивлению, на которое рассчитана сеть.

Что такое прогрузка автоматических выключателей

При работе энергосистемы, зачастую необходимо включать или выключать различные цепи (например, линии электропередач, распределительные устройства, генераторные установки) как в нормальных, так и в аварийных условиях. Ранее эту функцию выполняли переключатели и предохранители, расположенные последовательно с цепью. Однако такое средство контроля имеет два недостатка. Во-первых, когда предохранитель перегорает, требуется довольно много времени, чтобы заменить его и восстановить подачу тока. Во-вторых, предохранитель не может качественно прерывать сильные токи замыкания, возникающие в результате неисправностей в современных цепях высокого напряжения.

С развитием энергосистемы, требуется использование более надежных средств защиты, таких как автоматические выключатели. Данный прибор может замыкать или размыкать цепь вручную или автоматически при любых условиях, в том числе во время короткого замыкания.

Принцип работы автоматического выключателя

Автоматический выключатель состоит из неподвижных и подвижных контактов, называемых электродами. При нормальных условиях работы, эти контакты остаются замкнутыми и не будут автоматически открываться до тех пор, пока система не выйдет из строя. Конечно, контакты могут быть открыты вручную или с помощью пульта дистанционного управления, когда это необходимо. При возникновении неисправности в какой-либо части системы, отключающие катушки выключателя срабатывают автоматически, а движущиеся контакты раздвигаются механизмом, тем самым размыкая цепь.

Когда контакты автоматического выключателя разъединяются в условиях неисправности, между ними возникает электрическая дуга. Таким образом, ток может проходит до тех пор, пока разряд не прекратится. Появление дуги не только задерживает процесс прерывания тока, но и генерирует огромное количество тепла, которое может привести к повреждению системы или самого выключателя. Поэтому основная задача автоматического выключателя состоит в том, чтобы погасить дугу в кратчайшие сроки, дабы выделяемое тепло не достигло опасного значения. Это основной принцип работы автоматического выключателя.

Зачем нужен этот прибор

Автоматические выключатели выполняют три основные задачи:

  • они должны проводить ток максимально эффективно, когда отключены;
  • будучи включенными, они должны надежно изолировать контакты друг от друга;
  • в случае короткого замыкания, устройства должны отключать ток как можно быстрее и надежнее, тем самым защищая все последующее оборудование.

Почему важно проверять устройство

Автоматический выключатель может простаивать годами, но при возникновении короткого замыкания он должен тут же, в течение нескольких миллисекунд, защитить электрические цепи. Основными ошибками, возникающими в приборах, являются: неправильное соединение, короткие замыкания в катушках, повреждение/износ механических соединений или изоляционного материала. Поэтому автоматы должны регулярно и тщательно проверяться на исправность работы.

Автоматические выключатели выполняют жизненно важную роль в защите дорогостоящего оборудования от повреждений из-за неисправностей, то есть надежно подключают и отключают электроэнергию. Это требует подтверждения их надежности с помощью полевых испытаний во время монтажа и регулярных эксплуатационных испытаний в течение всего срока службы, чтобы предотвратить неполадки и проблемы, которые могут поставить под угрозу безопасность подстанции. Поэтому регулярное тестирование производительности является важной и экономически эффективной частью любой стратегии технического обслуживания.

Как определить, что автоматический выключатель неисправен

Автоматический выключатель может испортиться преждевременно, например, из-за летней жары. Если это произойдет, устройство перестанет сработать, даже если через эту цепь проходит слишком много электричества. Проще говоря, возникнет серьезная проблема, потому что она может в конечном итоге привести к пожару в доме. Стоит отметить, что в домашних условиях можно только визуально проверить устройство. Тесты и замену стоит предоставить профессионалам.

Причины выхода устройства из строя:

  1. Короткое замыкание. Обычно возникает, когда некоторые провода случайно соприкасаются.
  2. Перегрузка электрической цепи. Прибор пропускает больше тока, чем предусмотрено производителем.

Типичные признаки неисправного автомата:

  • запах гари в щитке, исходящий от электрического оборудования;
  • прибор горячий на ощупь;
  • видны сгоревшие детали, оборванные провода и явные признаки износа.

Если при проверке автоматического выключателя наблюдается какой-либо из вышеперечисленных признаков, значит пришла пора вызывать электриков с просьбой замены устройства.

Этапы заводского тестирования автоматических выключателей

Типовые испытания организуются с целью проверки возможностей и обеспечения точной номинальной характеристики автоматического выключателя. Такие испытания проводятся в специально построенной испытательной лаборатории в соответствие с ПУЭ.

Механическое испытание — это испытание типа механической способности, включающее повторное отключение и включение устройства. Автоматический выключатель должен закрываться и открываться с надлежащей скоростью, и выполнять свою работу и функцию без каких-либо сбоев.

Тепловые испытания проводятся для проверки теплового поведения автоматов. Из-за протекания номинального тока через его полюс в номинальном состоянии, испытуемый выключатель подвергается установившемуся повышению температуры. Повышение температуры для номинального тока не должно превышать 40 °C.

Диэлектрические испытания. Эти тесты проводятся для проверки мощности частоты и импульсного напряжения выдерживаемой емкости. Испытания частоты мощности проводятся на новом устройстве. Испытательное напряжение изменяется с номинальным напряжением выключателя. При импульсных испытаниях на выключатель подается импульсное напряжение определенной величины. Для наружного контура проводятся сухие и влажные испытания.

Испытание на короткое замыкание. Электроустановка подвергается внезапным коротким замыканиям в испытательных лабораториях, и осциллограммы используются, чтобы знать поведение автоматических выключателей во время включения, во время разрыва контакта и после гашения дуги. Осциллограммы изучаются с особым учетом токов возбуждения и размыкания, как симметричных, так и несимметричных напряжений рестрикции, а распределительное устройство иногда испытывается в номинальных условиях.

Читать еще:  Как подключить одинарный выключатель lezard

Регламент испытания автоматического выключателя

Плановые испытания проводятся на основании и со стандартами ПУЭ. Эти тесты проводятся на территории завода-изготовителя. Обычные и плановые испытания подтверждают правильность функционирования автоматического выключателя. Некоторые руководящие принципы и рекомендации по этим испытаниям включают регулярное техническое обслуживание и проверку того, что производительность автоматического выключателя соответствует калибровочным кривым производства. Крайне важно, чтобы испытания автоматических выключателей проводились в стабильных условиях при подходящей температуре, чтобы не было никаких отклонений в данных.

Профилактическое обслуживание автомата защиты цепи, осмотр и испытание

Профилактическое обслуживание зависит от условий эксплуатации. Первичные проверки будут направлены на выявление твердых частиц, загрязняющих внутреннюю работу устройства. Накопление твердых частиц обычно можно утилизировать, щелкнув на выключателе «Выкл» и «Вкл», чтобы очистить накопившуюся пыль.

Испытание отключения автоматического выключателя

Анализируя ток, потребляемый катушкой отключения во время работы выключателя, можно определить, имеются ли механические или электрические проблемы. Во многих случаях такие проблемы могут быть локализованы, и с помощью них можно найти первопричину.

Испытание сопротивления изоляции

Для испытания сопротивления выключателя, проводники нагрузки и линии должны быть предварительно отключены. Если их не отсоединить, то тестовые значения будут также включать характеристики подключенной цепи. Испытание на сопротивление имеет решающее значение для проверки того, что изоляционный материал работает корректно. Для проверки сопротивления изоляции используется прибор, известный как мегаомметр. Прибор подает напряжение постоянного тока на провод в течение заданного периода времени, чтобы проверить сопротивление внутри изоляции на конкретном проводе или обмотке. Следует также отметить, что если включить напряжение, которое слишком высоко для того, чтобы эта изоляция выдержала, то потенциально можно повредить изоляцию.

Испытания соединения

Проверка соединения важна для того, чтобы убедиться в наличии соответствующего электрического соединения и распознать следы перегрева. Важно, чтобы электрические соединения были установлены по правилам — это предотвращает и уменьшает перегрев.

Испытание контактного сопротивления

Нормальный износ контактов возникает после длительного использования. Простой способ определить следы ослабления внутри выключателя — это оценить сопротивление на каждом полюсе. Признаки аномальных отклонений внутри устройства, таких как эрозия и загрязнение контактов, очевидны, если на выключателе имеются чрезмерные падения милливольт. Проверка контактного сопротивления важна для определения того, пригоден ли прибор к работе.

Испытание на срабатывание при перегрузке

Компоненты отключения от перегрузки можно проверить, введя 300 % номинальной мощности выключателя в каждый полюс автоматического выключателя, чтобы определить, будет ли он автоматически реагировать на срабатывание. Цель состоит в том, чтобы убедиться, что автоматический выключатель работает корректно.

Как проводится прогрузка автоматического выключателя

В современной электронике используются различные устройства для проверки автоматических выключателей. Также проверка проводится с помощью разных методов тестирования и типов тестеров. При выполнении прогрузки делается частичный демонтаж прибора, а по окончанию тестов — возврат выключателя на место.

Чтобы начать проверку, требуется глубокое знание самого устройства, а именно надо:

  • понимать, как оно работает;
  • ознакомиться с ПУЭ;
  • знать исходные значения предыдущих тестов;
  • иметь начальные значения, с которыми сравниваются фактические результаты;
  • иметь установленные настройки или начальные характеристики, заданные производителем.

Для тестов используются специальные устройства, например, анализатор, микроомметр, а для проверки автоматических выключателей напряжением до 1000 В — СИНУС-1600 или Сатурн-М.

Прогрузка с помощью анализатора автоматических выключателей

Испытание с помощью анализатора — это эффективный способ проверки выключателя. Тестер анализирует не только время срабатывания, но и существенную синхронность полюсов в различных операциях. Это показывает время открытия или закрытия каждого полюса в одиночных или комбинированных операциях, а также проверяет возможную разницу между полюсами или время рассогласования, которое может привести к опасному отсутствию синхронизации.

Способ тестирования автоматического выключателя с помощью анализатора может выявить и дополнительные проблемы, что приводит к проверке других характеристик, таких как время сопротивления, время хода, время скорости, состояние катушек и механический анализ.

Прогрузка с помощью микроомметра

Автоматические выключатели обычно несут огромную величину тока. Большее контактное сопротивление вызывает большие потери и низкую пропускную способность тока, также высокую температуру. Так что тестирование сопротивления с помощью микроомметров является другим способом проверки прибора для выявления и предотвращения предстоящих проблем.

Синус-1600

Синус-1600 — достаточно функциональный прибор для испытаний, причем он безопасен и прост в эксплуатации. Его применение эффективно и рационально при предъявлении к форме испытательного тока повышенных требований относительно параметра нелинейных искажений.

Сатурн-М

Сатурн-М применяется для прогрузки автоматических выключателей с тепловыми и электромагнитными расцепителями. Применяется также и в лабораторных условиях в целях контроля тока, протекающего по прибору.

Видео по теме

Автоматический выключатель

Возрастающие потребности человека приводят к усложнению обслуживающего его оборудования, как в быту, так и на производстве. По большей части эти устройства работают на электрической энергии, поэтому неполадки в сети могут привести к поломке, длительным поискам причин и комплектующих, к связанным с этим неудобствам. Поэтому любая авария в электроустановке с каждым годом становится для потребителя всё дороже. Выход один — необходимо защитное устройство, которое избавит от всех проблем и будет отличаться надёжностью, доступностью и экономичностью.

Всем этим характеристикам соответствует автоматический выключатель (автомат). Это коммутационный аппарат, механика которого способна проводить и переключать токи при обычном состоянии электросети. Кроме этого, при аварийной ситуации автомат отключает потребителей после определённого времени или после увеличения тока до назначенной величины (ток короткого замыкания). Автоматы были разработаны для предохранения электроустановок от перегрузок, токов коротких замыканий, а некоторые модели и от пониженного напряжения. Ими также можно изредка отключать и включать подачу питающего напряжения в целях оперативного управления.

Конструктивно простейший современный автоматический выключатель включает в себя диэлектрический корпус, рычаг, два контакта (подвижный и стационарный) и расцепители (магнитный и тепловой). Магнитный или мгновенный расцепитель выполнен в виде соленоида, сердечник которого разъединяет цепь при превышении указанной величины тока, втягиваясь в обмотку. Для быстрого срабатывания (доли секунды) ему необходим ток, превышающий номинальный в 2-10 раз. Тепловой расцепитель срабатывает при более длительном воздействии повышенного тока (от нескольких секунд до часа), но и ток при этом должен возрасти всего в полтора раза. Увеличенный против номинального ток повышает температуру биметаллической пластины, которая изменяет свою длину и тем самым разъединяет цепь. После её остывания автоматический выключатель вновь готов к включению.

Автоматические выключатели разделяют по следующим параметрам:
— по виду тока (постоянный, переменный или оба). Величина тока может колебаться в широких пределах: от 6,3А до 6,3 кА;
— по количеству полюсов: от одно- до четырёх полюсных;
— по токоограничению (в наличии или нет);
— по типам расцепителей (максимальный, независимый или нулевой);
— по временному интервалу: без выдержки, с задержкой не зависимой от величины тока, с обратно зависимой от тока или сочетание этих характеристик;
— по наличию коммутации вторичных цепей (есть или нет);
— по виду подключения цепей (с задним присоединением, с передним, с универсальным);
— по типу привода (ручной, пружинный, с электромагнитным двигателем или пневматическим);
— по степени герметизации корпуса для защиты от воздействия внешней среды.

Кроме этого, автоматы делятся по времени срабатывания (от подачи команды на расцепление до фактического разъединения цепи):
— нормальные. Время варьируется от 0,02 до 0,1 секунды;
— селективные. Временной промежуток можно регулировать в рамках 1 секунды;
— быстродействующие. Кроме короткого периода отключения (0,005 секунды), данные автоматы имеют токоограничивающий эффект.

Стандартный ряд номинальных токов выключателя, Ампер: 1, 2, 3, 4, 5, 6, 8, 10, 13, 16, 20, 25, 32, 35, 40, 50, 63, 80, 100, 125, 160, 250, 400, 630, 1000, 1600, 2500, 4000, 6300

При выборе автоматического выключателя, помимо номинального тока, следет обращать внимание на его характеристику (ток мгновенного расцепления).
За редким исключеним, бывает три основных типа характеристики: B, C, D:
B: ток мгновенного расцепления от 3*In до 5*In включительно (где In — номинальный ток)
C: от 5*In до 10*In
D: от 10*In до 50*In

На рисунке ниже, приведен график зависимости времени срабатывания от тока отключения и их соответствие характеристикам B, C или D.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector