Gc-helper.ru

ГК Хелпер
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Регулировка выключателей постоянного тока

Диагностика выключателей переменного и постоянного тока

Основные причины и виды повреждений выключателей

Переменного и постоянного тока

Выключатели переменного тока. В зависимости от среды, в которой происходит гашение дуги, выключатели можно разделить на масляные, со специальными жидкостями, воздушные, автогазовые (газ генерируется твердым веществом под воздействием дуги), элегазовые, вакуумные. В устройствах электроснабжения железных дорог наиболее часто применяют масляные, элегазовые и вакуумные выключатели.

Выключатели постоянного тока. В устройствах электроснабжения наибольшее распространение получили выключатели АБ-2/4, ВАБ-28, ВАБ-43, ВАБ-48. Быстродействующие выключатели, наиболее повреждаемые аппараты среди оборудования тяговых подстанций постоянного тока.

Неисправностями выключателей являются:

· недовключение подвижных контактов, их зависание;

· поломка розеточных контактов приводит к невозможности отключения и включения выключателя, что может закончиться дугой и взрывом;

· перекрытие изоляции — самое массовое явление, происходит из-за атмосферных осадков и коммутационных перенапряжений, а также загрязнений;

· попадание воды внутрь выключателя и вытекание масла приводит к пробою;

· ослабление крепления подвижных и неподвижных контактов на изоляторах, а также токопроводящих шин проходных изоляторов;

· изменение плотности соприкосновения подвижного и неподвижного контактов, допустимые значения вытягивающего усилия не должны превышать заданных значений;

· эрозия, коррозия и окисление мест контакта ножа и губки;

· ослабление соединения шин с неподвижным контактом, заземления с разъединителем;

· смещение подвижного контакта относительно оси неподвижного;

· загрязнение и растрескивание изоляторов;

· разновременность касания ножей с губками трехфазного разъединителя, граница поля допуска — 3 мм.

У выключателя ВМГ-133 может наблюдаться разрушение фарфоровых тяг. Механизмы отказывают из-за поломок отдельных деталей, нарушений регулировки. Застревание тяг, заедание валов может быть источником аварии. Приводы отказывают из-за плохой регулировки, заедания в механизме расцепления, дефектов пружин, выпадения осей, пальцев. Пружинный привод ВМП-10П может самопроизвольно включаться при заводе пружин.

Методы и средства диагностики выключателей переменного

И постоянного тока

В качестве определяющих параметров состояния масляного выключателя можно использовать диэлектрическую прочность масла и степень износа контактов выключателя с последующим увеличением переходного электрического сопротивления.

Диэлектрическая прочность масла снижается с ростом числа отключений коротких замыканий. Ток дуги приводит к подгару контактов выключателя и последующему увеличению переходного электрического сопротивления.

Диэлектрическая прочность масла при заливке должна быть не ниже 40 кВ, граница поля допуска — 25 кВ на выключатель. Если после заливки диэлектрическая прочность масла снижается более чем на 5 кВ, то это говорит о загрязнении внутрибаковой изоляции.

Диэлектрическую прочность масла и износ контактов на практике трудно контролировать. Существует еще один интегральный определяющий параметр — сумма отключаемых токов. Границей поля допуска для выключателей ВМО и ВМК, работающих на фидерах контактной сети, можно принять 100 кА. На практике для фиксации суммы отключенных токов применяют сумматор ФСТКЗ-76. Выключатели типа ВМО и ВМК имеют ограниченный ресурс по числу оперативных отключений — всего 70 — 80.

Основной метод диагностирования коммутационных аппаратов — комплексное опробование с одновременными измерениями времени включения и отключения, разновременности замыкания и размыкания контактов, проверкой приводов (напряжения срабатывания электромагнитов, работоспособности при нижнем пределе давления воздуха), температуры и переходного сопротивления контактов.

Около 70. 80 % всех отказов коммутационных аппаратов связано с отказами механической системы. Ее можно полностью диагностировать только при проверке функционирования на выведенном из работы аппарате. Состояние механизмов можно определить по усилиям, необходимым для их перемещения. Временные характеристики определяют осциллографированием работы контактов. Для исследования механических частей снимают виброграммы(рис. 77).

Виброграмма записывается при помощи вибрографа — электромагнита, питаемого переменным током частотой 50 Гц, к якорю которого прикреплено пишущее устройство. Синусоида служит для отметки времени.

Рис. 77. Виброграмма выключателя.

Изоляцию выключателей испытывают повышенным напряжением. Мелкие частицы в элегазе, возникающие при работе механизмов, могут вызывать частичные разряды. Отбираются также пробы элегаза для контроля пробивного напряжения, влажности и наличия продуктов разложения.

Возможны измерения акустическими методами (они сопровождаются большими помехами), электрическими методами с использованием специальных встроенных электродов.

Увеличение переходного сопротивления контактов может быть обнаружено пирометрами по изменению температуры наружных поверхностей выключателя.

В качестве показателя наработки высоковольтных выключателей используют сумму произведений отключаемых токов на время отключения. Для регистрации указанного показателя применяют фиксатор-сумматор токов короткого замыкания ФСТКЗ-76. Наибольшая сумма, которую фиксирует сумматор, равна 125 кА • с. Для эксплуатируемых на тяговых подстанциях масляных выключателей 27,5 кВ граница поля допуска составляет 100 кА • с.

Для проверки коммутационной аппаратуры комплексных распределительных устройств КРУ и КРУН (исключая высоковольтные испытания и прогрузку токовых цепей) служит устройство УПКА-1. Оно позволяет:

· проверять коммутационную аппаратуру (за исключением токовых реле и автоматов);

· измерять время и скорость включения и отключения выключателя с помощью вибратора;

· проверять напряжения срабатывания и возврата контактора и электромагнита привода выключателя;

· опробовать выключатель при пониженном на 20% напряжении питания.

Измерение переходных сопротивлений контактов коммутационной аппаратуры с номинальным напряжением до 500 кВ возможно с помощью микроомметра М-1. Он работает по принципу вольтметра — амперметра с непосредственным отчетом, пределы измерения — 0. 2500 мкОм.

Кроме аппаратурного диагностирования, высоковольтные выключатели обследуют визуально и на слух.

Масляные выключатели.Визуально проверяют действительное положение выключателя, состояние поверхности фарфоровых покрышек вводов, изоляторов и тяг, целость мембран предохранительных клапанов и отсутствие выбросов масла из газоотводов, отсутствие просачивания масла через сварные швы, разъемы, краны. По цвету термопленок определяют температуру контактных соединений. Проверяют также уровень масла. На слух проверяют отсутствие треска и шума внутри выключателя.

Элегазовые выключатели. Контролируют давление по показаниям манометров, а также плотномеров. При значительных колебаниях температуры давление изменяется в широких пределах. Утечки элегаза не должны превышать 3 % общей массы в год (массу определяют по номинальному давлению при известной температуре). Визуально проверяют чистоту наружной поверхности, состояние заземляющих проводок резервуаров, на слух — отсутствие электрических разрядов, треска, вибраций

Вакуумные выключатели.Контролируют отсутствие дефектов (сколов, трещин) изоляторов и загрязнений их поверхности, а также отсутствие следов разрядов и коронирования. Износ контактов допускается до 4 мм.

Быстродействующие выключатели. В качестве показателя наработки быстродействующих выключателей рекомендуется использовать сумму произведений I 2 • t. Этот показатель определяет ресурс выключателя по состоянию дугогасительной камеры. Разработан регистратор-сумматор токов короткого замыкания, содержащий шесть каналов, каждый из которых имеет свой порог тока срабатывания. Число срабатываний каждого канала фиксируется электромеханическими счетчиками. Разработан также электронный сумматор токов короткого замыкания.

Разъединители, отделители и короткозамыкатели.Визуально проверяют состояние контактных соединений и изоляции аппаратов (признаки нагрева контактов: цвет побежалости, изменение цвета термопленки), чистоту поверхности изоляторов, отсутствие продольных и кольцевых трещин. После срабатывания короткозамыкателей контролируют целость тяг и изолирующих вставок.

У отделителей проверяют механизмы приводов, цепи управления и блокировки. Для контроля температуры нагрева контактов применяют метод, основанный на том, что при данном токе определяют превышение температуры контакта над температурой окружающей среды и, приведя его к значению номинального тока соединения, сравнивают с нормой. Расчет приведенного значения температуры производится по формуле:

Читать еще:  Поплавковый выключатель wa 65 503211390 wilo

,

где ΔtНР — расчетное значение превышения температуры при номинальном токе IНОМ; Δt— измеренное превышение температуры при токе через контакт I.

Для диагностирования выключателей могут применяться следующие приборы.

Система ODEN AT (рис. 78) предназначена для проверки автоматических выключателей первичным током, определения коэффициента трансформации трансформаторов тока и др. Универсальная система ODEN AT позволяет отображать значения времени, тока и напряжения, коэффициент трансформации, фазовый угол, Z, Р, R и cosφ. С ее помощью можно проверять:

· устройства РЗ первичным током;

· устройства автоматического повторного включения и секционные разъединители;

· полярность подключения устройств.

Рис. 78. Система ODEN ATРис. 79. Система ТМ 1600/МА 61

ТМ 1600/МА 61 – система измерения временного цикла выключателей (рис. 79). Дискретные входы системы позволяют регистрировать время включения и отключения главных контактов, контактов резисторов и других вспомогательных контактов. Каналы являются независимыми, поэтому можно измерять временные характеристики контактов резисторов и последовательно соединенных камер выключателя, не разъединяя их.

Блок ТM1600 обеспечивает 24 канала и более. Производит измерение аналоговых величин; падение напряжения; ток катушки, построение вибродиаграммы хода контактов.

Микропроцессорный микроомметр МОМ 690 (рис. 80) для измерения сопротивления контактов выключателей, разъединителей, предохранителей с ножевыми контактами, шинных соединений, линейных соединений и т.п. Позволяет производить измерение, хранение и представление результатов с использованием микропроцессора. Выход переменного тока используется для быстрого и удобного размагничивания трансформаторов тока.

Рис. 80. Микропроцессорный микроомметр Рис. 81. Система Egil

МОМ 690

Система Egil(рис. 81). Система предназначена для испытания выключателей среднего напряжения. Тестируются выключатели, имеющие только один главный контакт на фазу. Состояние контактов, оборудованных предварительно включенными резисторами, записывается и одновременно выводится на дисплей.

Вакуумный тестер Vidar (рис. 82) предназначен для проверки состояния вакуумной камеры выключателя. В основу его работы положено известное соотношение между напряжением пробоя величиной вакуума. Позволяет подавать одно из шести напряжений в пределах от 10 до 60 кВ постоянного тока. При этом одно из значений напряжения устанавливается при заказе прибора пользователем. Состояние вакуумной камеры определяется по индикаторным лампам: зеленая лампа указывает на то, что камера исправна, а красная — нет. Вес прибора 6 кг.

Рис. 82. Вакуумный тестер Vidar Рис. 83. Источник напряжения

постоянного тока В10Е

Дата добавления: 2018-11-26 ; просмотров: 1390 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Схема подключения теплового реле – принцип работы, регулировки и маркировка

Электродвигатели и прочее электрооборудование в процессе эксплуатации могут испытывать высокие нагрузки, вызывающие их перегрев. Частые перегревы обмоток силовых установок приводят к разрушению изоляционных материалов и значительному сокращению срока службы, поэтому в конструкции таких устройств предусматривают защитное тепловое реле (ТР). Подключениев схему теплового реле обеспечивает обесточивание электрооборудования при возникновении нештатных ситуаций и предотвращает его выход из строя.

Содержание статьи

  • Основные характеристики тепловых реле
  • Устройство и принцип работы тепловых реле
  • Виды тепловых реле
  • Схема подключения теплового реле
  • Регулировка теплового реле
  • Маркировка тепловых реле

Основные характеристики тепловых реле

Основные характеристики теплового реле, учитываемые при выборе подходящего варианта:

  • Номинальный ток защиты. Выбирается в соответствии с номинальным током нагрузки. Номинальный ток термореле должен быть в полтора раза выше Iном защищаемого двигателя.
  • Интервал регулирования установки тока срабатывания.
  • Напряжение цепи и характер тока – постоянный или переменный. При выходе напряжения за допустимые пределы термореле выйдет из строя.
  • Номенклатура и число вспомогательных контактов управления. Некоторые ТР имеют дополнительные контакты, управляющие функционированием самого теплореле и обслуживаемой нагрузки.
  • Мощность коммутации. Важное свойство ТР, которое характеризует выходную мощность нагрузки.
  • Граница (порог) срабатывания. Это коэффициент, величина которого зависит от величины Iном. Чаще всего этот коэффициент находится в пределах 1,1-1,5.
  • Чувствительность к асимметрии фаз. Этот параметр равен отношению фазы с перекосом к фазе, по которой проходит Iном.
  • Класс отключения. Характеризует усредненный период срабатывания устройства.

Устройство и принцип работы тепловых реле

Для защиты электродвигателей и другого электрооборудования чаще всего применяют ТР с биметаллическими пластинами.

В конструкцию биметаллического теплового реле входят:

  • Биметаллическая пластина. Изготавливается из двух сплавов, обладающих разными коэффициентами термического расширения. Обычно это инвар (низкий Кр) и хромоникелевая сталь (более высокий Кр). Между собой их сваривают или соединяют прокаткой. Один из этих металлов нагревается быстрее, другой – медленнее. При перегрузке по току часть пластиныс высоким Кр прогибается ко второй частипластины, которая имеет меньший Кр. Такое движение влияетчерез толкатель на группу контактов.
  • Регулятор тока установки. С его помощью устанавливают максимальное значение тока, выше которого ТР обесточивает цепь. Ток срабатывания регулируется путем увеличения или уменьшения зазора между основной пластиной и толкателем.
  • Электрические контакты. Их подключают к обмоткам магнитного пускателя теплового реле. Обычно в ТР имеются два контакта – нормально замкнутый и нормально разомкнутый. При силовом воздействии биметаллической пластинки контакты меняют свое положение на противоположное.

Нагрев биметаллической пластины происходит по одной из двух схем: непосредственно из-за тока перегруза или косвенно, через отдельный термочувствительный элемент. В одном устройстве могут соединяться оба этих принципа, что значительно повышает его эффективность. При превышении критических величин тока потребителя реле разомкнет цепь и обесточит МП, а следовательно, защищаемое электрооборудование.

На срабатывание релейного элемента может повлиять повышенная температура окружающей среды. Для компенсации этого явления и предотвращения ложных срабатываний в конструкции ТР предусматривают дополнительные биметаллические пластины, которые прогибаются в сторону, противоположную пространственному положению основного элемента.

Виды тепловых реле

Производители предлагают несколько типов ТР, которые отличаются между собой конструктивными особенностями и видом применяемых МП.

  • ТРП. Однополюсный коммутационный аппарат, имеющий комбинированный вариант нагрева. Используется в сетях постоянного тока, в которых напряжение не превышает 400 В, для защиты асинхронных двигателей. Устойчив к ударным и вибрационным нагрузкам.
  • РТЛ. Защищает электромоторы от затянутого пуска, асимметрии токов, перегрузов, при исчезновении фазы.
  • РТТ. Обеспечивает защиту асинхронных трехфазных машин с КЗ ротором от перегрузок, затянутого старта и перекоса фаз.
  • ТРН. Используется в электросетях постоянного тока. Служат для контроля пуска электрических установок и рабочего режима двигателя.
  • РТИ.Функционирует совместно с автоматическими выключателями или предохранителями.
  • РТК. Предназначен для использования в цепях автоматики, контролирует температурный режим в корпусе электрического оборудования.

Перечисленные ТР не защищают электроцепи от короткого замыкания.

Схема подключения теплового реле

Подсоединение ТР к силовым установкам осуществляется в соответствии с инструкцией производителя. В большинстве случаев ТР к защищаемому устройству подключают через нормально замкнутый контакт, который последовательно соединяют с клавишей «стоп». Разомкнутый контакт включает теплозащиту при выходе тока за допустимые значения. Схемы подключения теплового реле в цепь двигателя или другого электрооборудованиямогут быть и другими, в зависимости от присутствия дополнительных устройств.

Читать еще:  Выключатель без фиксации legrand valena двухклавишный

Стандартная схема подключения теплового реле

Тепловое реле устанавливают и подключают вместе с магнитным пускателем, выполняющим функции включения электрического привода. Возможны варианты, когда тепловое реле устанавливают на DIN-рейку или отдельную панель.

При подключении потребителя в сеть 220 В или 380 В все фазы после магнитного пускателя пропускают через тепловое реле, а затем уже подсоединяют к электродвигателю. При включении пусковой кнопки напряжение электропитания попадает на обмотку МП, который включает электродвигатель. Если ток нагрузки увеличивается до значения, превышающего критическую величину, тепловое реле срабатывает и отключает электродвигатель.

Тепловое реле ТРН имеет всего два входящих подключения. Неподключенный провод фазы в этом случае пускают непосредственно от пускателя к двигателю. Поскольку ток в электродвигателе изменяется пропорционально, допускается контроль только двух из них (любых).

Регулировка теплового реле

Для эффективного выполнения функции отключения электродвигателя или другого обслуживаемого аппарата необходимо правильно отрегулировать настройки ТР таким образом, чтобы вероятность ложных срабатываний была исключена. Настройку рекомендуется осуществлять на специализированном стенде способом фиктивных нагрузок:

  • Через термочувствительный элемент пропускают ток для моделирования реальной тепловой нагрузки.
  • С помощью таймера определяют время срабатывания. При проведении настройки с помощью контрольного винта при токе 1,5 Iн время срабатывания должно быть не более 2,5 минут, 5-6 Iн – не более 10 секунд.

Маркировка тепловых реле

В маркировке указывается большинство важных характеристик ТР. Пример обозначения: РТЛ-Х1Х2Х3-Х4-Х5А-Х6А-Х7Х8, где

  • РТЛ – тип теплового реле;
  • Х1 – ном.ток, 1 – до 25 А, 2 – до 100 А, 3 – до 250 А, 4 – до 510 А;
  • Х2– 3 цифры (условно), обозначающие диапазон токовой уставки;
  • Х3–литера, характеризующая исполнение;
  • Х4– способ возврата: 1 – ручной, 2 – самовозврат;
  • Х5 – Iном, А;
  • Х6 – диапазон уставки по току, А;
  • Х7– климатическое исполнение;
  • Х8– торговая марка.

    Тепловое реле – эффективный элемент защиты электродвигателей и другого электрооборудования, который выгодно отличается от входного автоматического выключателя тем, что не подвержен ложным срабатываниям при кратковременных скачках тока.

    Проверка выключателя света: порядок работы со стандартными выключателями, и с регулятором мощности

    В повседневной жизни часто встречается ситуация, когда не включается свет в квартире или офисе. В большинстве случаев виной тому неисправность лампочек или самого источника света.

    Однако случаются ситуации, когда сам выключатель света теряет работоспособность. Для проверки его использую несколько методов, в зависимости от типа устройства. Рассмотрим каждый из способов проверки подробнее.

    Выключатель стандартного типа

    Стандартным считается прибор клавишного типа. Начало проверки заключается в получении доступа к клеммам.

    Как известно, выключатели света могут крепиться в специальное гнездо или накрываться крышкой на стене без углубления. В первом варианте проверки нужно будет ослабить крепление и аккуратно вынуть сердцевину.

    Во втором случае достаточно снять крышку наружного крепления. При этом не стоит отключать провода от устройства.

    Проверка с помощью специального прибора

    Чаще всего электрики для проверки используют мультиметр. Это многофункциональный прибор, с помощью которого можно измерить такие параметры, как сопротивление, силу тока и напряжение.

    Перед началом измерений необходимо обесточить электрическую сеть. Далее прибор соединяют с клеммами выключателя света. Настроив мультиметр на измерение сопротивления, проводят замеры.

    В рабочем выключатели значения должны быть равными нулю в положении «включено» и показывать бесконечность в положении «выключено». Если значения отличаются от таковых, то стоит произвести замену выключателя.

    Еще одним прибором, с помощью которого можно провести проверку, является вольтметр. Его ставят на измерение переменного типа напряжения и подключают к клеммам. Включив питание в электрической сети, проводят замер напряжения.

    В выключенном положении устройства, вольтметр должен показывать стандартное для сети напряжение в 220 Вольт. Погрешность в несколько вольт вполне допустима.

    Если же напряжение отсутствует, то неполадку следует искать за пределами проверяемого устройства, например, в самой проводке.

    Применение индикаторной отвертки

    При помощи индикатора фазы можно определить, какой провод отвечает за заземление, а какой — за фазу. В случае проверки с помощью отвертки такого типа электричество необходимо оставить включенным.

    В идеале, напряжение должно присутствовать на одной из фаз. Если же оно отсутствует на обеих клеммах, то проблема заключается не в переключателе света. Наличие фазы проверяют при отключенном положении клавиш.

    Далее нужно провести индикацию при включенном свете. При этом возможны два варианта развития проверки. Разница заключается в том, какой из проводов разрывается.

    • В первом варианте разрыв происходит на фазном проводе, ноль проходит напрямую в источник света. В таком случае напряжение будет фиксироваться на обеих клеммах во включенном состоянии. В противном случае можно делать вывод о наличии неполадок.
    • Если же разрыв приходится на «ноль», то индикатор поможет зафиксировать отсутствие напряжения на двух клеммах в состоянии «включено». Если хоть одна клемма покажет наличие напряжения, то можно говорить о неисправности и необходимой замене устройства регуляции света. Стоит заметить, что прокладка фазы напрямую в светильник чревата поражениями электрическим током при замене лампочки.

    Проверка с помощью лампочки

    Кроме перечисленных выше способов проверки, специалистами также используются специальные контрольные лампочки.

    Подготовленную лампу вкручивает в патрон источника света, подключенного к проверяемому. Выводим два провода и зачищаем кончики от изоляционного слоя на расстояние до 1 сантиметра.

    Подключаем защищенные кончики проводов к клеммам переключателя света.

    Делать это необходимо с осторожностью. При положении «выключено» лампочка светиться не в полную силу. Если же свет отсутствует, то причина поломки не в выключателе света.

    После ставим меняем положение клавиши на значение «включено». В этом случае он считается рабочим, если лампочка не засветилась. В противной ситуации причина поломки именно в неисправности устройства света.

    Выключатель с подсветкой

    Широко распространенным на сегодня является выключатель с подсветкой. С практической точки зрения это удобно, так как в темное время суток не нужно искать по стене клавишу выключателя. Также легкое свечение создает эффект небольшого ночника.

    Со стороны внутренней конструкции суть состоит в параллельном монтаже светодиодов по отношению к основным контактам. Альтернативой светодиодам является неоновая лампочка.

    В положении «выключено» через выключатель проходит ток, который питает лампочку и обеспечивает свечение. Значение его слишком низкое, чтобы зажечь основной источник света, но для светодиода его вполне достаточно.

    После включения лампы, происходит обесточивание светодиода и он прекращает свечение.

    Конструкционные решения такого рода схемы позволяют легко проверить выключатель на работоспособность.

    Так, если после включения клавиши основной свет не зажегся, а лампочка светодиода продолжает гореть, то можно говорить о том, что контакты не замкнулись и выключатель неисправен.

    Проверка диммера

    Диммер представляет собой электрический прибор, с помощью которого проводят замеры мощности или ее изменение в сети. На практике электрики приспособили диммеры для плавного изменения яркости свечения светильников.

    Современные модели приборов такого типа имеют электронную основу. Стоит заметить, что цепь лампы принимает непосредственное участие в работе диммера и при наличии сбоев в работе, последний перестает работать.

    Читать еще:  Как ставить бытовой выключатель

    На этом принципе построены методы проверки такого рода выключателей.

    В домашних условиях диммеры довольно просто проверить следующим образом. Выключить питание всей электрической сети, разъединить провода питания от клемм выключателя и соединить их попарном между собой. После этого включает общее питание в сети.

    При этом свет из лампы не должен поступать. В противном случае можно говорить о неполадках в самом диммере.

    Также не стоит забывать о наличии предохранительного элемента в конструкции диммера. Часто именно он является причиной сбоев в работе всего прибора.

    Таким образом, провести проверку выключателя в домашних условиях довольно просто. Метод проверки выбирают, исходя из типа выключателя и имеющихся инструментов. При отсутствии последних, стоит обратиться к специалисту за помощью.

    Способы управления частотным преобразователем

    Существует несколько способов управления частотным преобразователем. В процессе работы ПЧ происходит оперативный контроль следующих функций:

    Пуск – Останов (Старт – Стоп). Управление началом вращения и торможением подключенного двигателя.
    Установка скорости. Настройка рабочей скорости привода.
    Аварийный останов. Аварийное снятие силового питания, сигнал разрешения работы.

    Эти изменения в работе ПЧ производятся путем подачи сигналов с внешних устройств либо с панели управления. Остальными параметрами можно управлять исключительно с панели управления, причем некоторые из них активны только при выключенном двигателе.

    Способы управления могут быть следующими:

    • управление с помощью клавиатуры (панели управления) частотного преобразователя
    • управление с помощью пульта ДУ
    • аналоговый вход (изменение текущей скорости вращения двигателя)
    • дискретные входы (изменение различных состояний и параметров преобразователя)
    • последовательный интерфейс RS-485 либо его аналог

    Рассмотрим управление преобразователем на примере ПЧ Prostar PR6000.

    Управление с помощью пульта ДУ

    В отличие от панели управления пульт может иметь кабель длиной до 500 м, по которому передаются сигналы последовательного интерфейса.

    Пульт управления имеет клавиши RUN (Пуск), STOP/RESET (Стоп/Сброс), JOG (работа в импульсном или толчковом режиме). Также можно сбрасывать ошибки, менять значение частоты и направление вращения двигателя, изменять прочие параметры.

    Управление через аналоговый вход

    В преобразователе частоты PR6000 имеется два аналоговых входа – AI1 и AI2. Это выгодно отличает его от других моделей с одним аналоговым входом.

    Вход AI1 может использоваться для управления по напряжению с входным сопротивлением 47 кОм. Вход AI2 имеет выбор, который производится переключателем: токовый вход с входным сопротивлением 500 Ом, или вход по напряжению.

    Управление через дискретные входы

    У преобразователя PR6000 имеется 8 дискретных (цифровых) входов: FWD (вперед/стоп), REW (назад/стоп) и 6 входов DI1…DI6.

    Входы FWD и REW могут работать в двух- и трехпроводном режиме, при этом третий провод программируется на одном из входов DI1…DI6. Выбор режима управления скоростью устанавливается в параметре Р077.

    Дискретные входы DI1…DI6 являются многофункциональными, они программируются на разные функции, которые запускаются при активации соответствующего входа.

    Набор возможных функций: выбор многоскоростного режима, выбор разгона/замедления, включение вращения в режиме JOG вперед/назад, управление остановом, увеличение/уменьшение частоты, вход сигнализации неисправности (аварии), пауза при пуске, трехпроводное управление пуском/стопом, торможение постоянным током, сброс ошибки/сообщения, работа по качающейся частоте, включение/сброс/вход счетчика. Всего можно выбрать до 20 различных параметров, которые устанавливаются в параметрах Р071…Р076 для каждого входа. Активация дискретных входов происходит путем замыкания нужного входа на клемму СОМ. Причем, это может производиться разными способами — выходом контроллера, контактами реле, датчика или ручной кнопки. Дискретные и аналоговые входы показаны ниже.

    Управление через последовательный интерфейс

    При работе через интерфейс RS-485 преобразователь частоты управляется контроллером либо персональным компьютером через специальный адаптер-преобразователь RS-485/RS-232.

    Через этот интерфейс преобразователь может не только принимать команды на изменения параметров и состояния, но и выдавать информацию о своем текущем состоянии на другие устройства. Также по интерфейсу RS-485 может поддерживаться связь с другими преобразователями.

    Далее поговорим о способах оперативного управления режимами ПЧ.

    Старт/Стоп двигателя

    Запуск и останов двигателя может производиться следующими способами.

    1. С панели управления преобразователя частоты. Для этого используются кнопки RUN, STOP/RESET. Если нужен кратковременный запуск, используется кнопка JOG.
    2. Подачей сигнала на дискретные входы FWD, REW при двухпроводном управлении. Для трехпроводного управления нужно задействовать один из дискретных входов DI1…DI6 и запрограммировать его соответствующим образом. Режим выбирается параметром Р077. Любой из этих входов можно также использовать для импульсного запуска (команда JOG). При двухпроводном управлении для работы двигателя необходим постоянный сигнал на соответствующих входах. При трехпроводном достаточно кратковременного сигнала.
    3. Через последовательный интерфейс командами с контроллера. Выбор источника команды Старт/Стоп в ПЧ Prostar PR6000 производится в параметре Р006.

    Двухпроводное управление пуском/остановом

    Трехпроводное управление пуском/остановом

    Управление частотой

    ПЧ может управлять скоростью несколькими способами в зависимости от конкретного оборудования.

    1. Управление скоростью при помощи переменного резистора, установленного на клавиатуре (панели управления) ПЧ.
    2. Дискретное изменение при помощи клавиш панели управления Вверх/Вниз.
    3. Дискретное изменение при помощи контактов (любых двух), подключенных ко входам DI1…DI6. При активации соответствующего дискретного входа происходит уменьшение либо увеличение скорости в заданных пределах с заданным шагом.
      Примечание. В вариантах 2 и 3 при включении питания двигатель запускается на частоту, установленную в параметре Р005. В процессе работы частоту можно оперативно изменять. Если измененное значение частоты необходимо запомнить, используется параметр Р155.
    4. Задание скорости при помощи аналоговых сигналов напряжения или тока, поступающих на входы AI1, AI2. Аналоговые сигналы могут комбинироваться в разных вариантах.
    5. Задание в соответствии с частотой импульсов на входе DI6.
    6. Через интерфейс RS-485 от контроллера. Выбор канала управления частотой осуществляется параметром Р004. Верхняя и нижняя рабочие частоты устанавливаются в параметрах Р009 и Р010. Скорость работы двигателя в импульсном (толчковом) режиме JOG задается параметром Р052.

    Аварийный останов ПЧ

    Кроме штатного останова функцией Стоп с заданным замедлением используются два способа экстренного останова двигателя и отключения ПЧ.

    1. Аварийный останов прерыванием питания. Для этого производители рекомендуют перед силовым питанием ПЧ устанавливать трехфазный линейный контактор, питание катушки которого зависит от состояния аварийной цепи всего оборудования. При нажатии на кнопку «Аварийный останов» или другом экстренном случае питание контактора отключается, и напряжение с ПЧ снимается. Таким образом двигатель гарантированно остановится.
    2. Используется функция дискретного входа DI1…DI6 «Сигнализация неисправности внешнего устройства». Если запрограммировать нужный вход на эту функцию, в случае подачи на него аварийного сигнала преобразователь остановится.
    голоса
    Рейтинг статьи
  • Ссылка на основную публикацию
    ВсеИнструменты
    Adblock
    detector