Gc-helper.ru

ГК Хелпер
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Схема фиксация положения выключателя

Электрические трехпозиционные переключатели — схема подключения

Переключатель трехпозиционный – электромеханическое коммутационное устройство, используемое в электротехнике для переключения питания на другую линию при перегрузке. Также он применяется для проведения электротока в обычном режиме и периодического оперативного включения электроцепи.

  1. Принцип работы
  2. Разновидности трехпозиционных переключателей
  3. Использование в быту
  4. Как подключить
  5. Схема подключения

Принцип работы

Переключатель на 3 положения имеет рукоятку с тремя позициями для размыкания и замыкания цепочки. Серединная позиция обеспечивает размыкание каждой имеющейся группы контактов. Управление устройством пользователь осуществляет вручную. Верхние контакты применяются обычно для подсоединения вводов, а нижние – нагрузки. Такое устройство не снабжено расцепителями (тепловым либо электромагнитным), так что при его установке на входы ставят выключатели-автоматы, срабатывающие при перегрузке. Данная конфигурация предотвратит инциденты искрения и повреждение целостности изоляционного материала проводки. В прошлом эти приборы применялись в качестве ведущих устройств ввода в распредщитах. Со временем это место заняли выключатели-автоматы, но гибкость и простота конструкции позиционных переключателей, а также их невысокая цена обеспечивают этим изделиям достаточную популярность.

Разновидности трехпозиционных переключателей

Трехпозиционный пакетный переключатель

Электрические переключатели на 3 положения выпускаются в различных вариантах исполнения. Некоторые модели снабжены опцией фиксации положения переключения. Они оборудованы механизмом запора на ключ, исключающим самопроизвольный переход в другое положение. Другие, этой функции не имеющие, самостоятельно возвращаются в исходную позицию. Конструкция некоторых устройств предусматривает наличие нулевого положения – оно предполагает разъединение всех контактов.

Обычно изделия выпускаются с расчетом на эксплуатацию в электросетях с номинальным показателем силы тока 25, 16 или 10 А. Что касается напряжения, для постоянного тока его показатель может достигать значения 220 В, для переменного – до 500. Аппараты снабжены маркировкой, показывающей уровень мощности и категорию защиты.

Наиболее распространенный вариант исполнения — пакетный механический переключатель на 3 положения. Элементом управления у них является не кнопка, а рукоять. Современные модели оборудованы эргономичными ручками, конструкция которых предотвращает скольжение пальцев. Изделия бывают двух видов – галетные и кулачковые.

Устройство галетного переключателя включает в себя пластиковые пластины (пакеты) с жестко фиксированными на них выводами контактов. Между последними находятся фибровые шайбочки для гашения искр, которые вместе с двойным разрывом электродуги позволяют коммутировать высокие токи. Есть и двигающийся контакт, соединенный с механизмом переключения. Его позиция устанавливается посредством поворота вала, который обеспечивают ручка и специальная пружина, позволяющая моментально размыкать и замыкать контакты. У вала есть 3 установленных положения, каждому из которых соответствует некоторая конфигурация зажатых или открытых пар контактов. Такой прибор можно использовать, в том числе, для подсоединения трехфазного электрического двигателя с опцией реверса – вращения ротора в направлении, отличном от нормального.

Работа автоматического трехфазного переключателя

Кулачковое устройство тоже включает в себя серию пакетов, но устроенных по-другому. На внешних сторонах пластинок, соединяющихся с корпусом, располагаются двигающиеся контакты, а на внутренних – статичные. Первые из них имеют вид мостов с пружинами. Их позиция регулируется штоковым механизмом, меняющим положение под действием кулачка. У последнего, в свою очередь, позиция меняется посредством рукоятки и вала. Как в случае галетных моделей, так и в устройствах с кулачками у вала может быть разное число позиций (до восьми). В трехпозиционных приборах их число равно трем.

Крепиться выключатель может на дин-рейку, на стену, в шкаф, в зависимости от модели. Выпускаются изделия с защитой от взрывов, используемые на производствах, представляющих опасность для здоровья человека. Большинство трехпозиционных выключателей, тем не менее, восприимчивы к взрывам, температурным перепадам, не терпят попадания влаги. Степень чувствительности прибора к условиям окружающей среды можно определить по внешнему виду: если изделие открытое, лишено защищающего корпуса, оно отличается высокой чувствительностью, устанавливать его надлежит только внутри щита в помещении с сухим воздухом. Переключатели с корпусом из пластика или металла и защищенными от прикосновений зажимами можно ставить и вне щита.

Если корпус герметично запаян, прибор разрешается устанавливать даже на открытом воздухе. При эксплуатации допускаются слабовыраженные механические воздействия и вибрация (не больше 35 Гц).

К плюсам устройств стоит отнести надежность функционирования, стойкость к износам и достаточно низкую цену. Они очень быстро подавляют электрические дуги, но выдерживают ограниченное число коммутаций перегрузок. Слабой стороной этих изделий по сравнению с выключателями-автоматами являются также ограниченные возможности в качестве защитного устройства: они не предохраняют от инцидентов короткого замыкания. Также механические переключатели не подлежат ремонту: если изделие пришло в негодность, его демонтируют с последующей утилизацией, а на его место устанавливают новое. Выходят из строя они относительно быстро, хотя некоторые производители заявляют, что устройство способно выдержать до полумиллиона переключений.

Использование в быту

Трехпозиционный переключатель EKF Basic

Есть множество вариантов применения трехпозиционных переключателей на 220в в промышленности и быту:

  • управление светом и трансформаторными подстанциями;
  • переключение программ функционирования электросварочного, нагревательного и иного производственного оборудования;
  • манипуляции с режимами электрических двигателей;
  • дистанционное управление асинхронными электромоторами;
  • автоматический ввод резерва;
  • коммутация в щитковых устройствах.

Также эти изделия используются для электроснабжения подстанций, например, в заземляющих конструкциях, коммутировании измерительных приборов.

Как подключить

В советские времена применение переключателя на три положения для электроснабжения многоквартирных домов было распространено и являлось повсеместным явлением. Тогда их устанавливали в распределительных щитах. Сейчас вместо таких устройств чаще используются автоматические. Если хозяин предпочел использование трехпозиционного трехфазного переключателя, его можно установить перед счетчиком электроэнергии, ведущим к щиту, чтобы можно было выключить квартирную сеть полностью, если возникнет такая необходимость. Также для усиления защиты сети от избыточной нагрузки или короткозамкнутого инцидента можно рекомендовать совмещенное использование обеих устройств.

При установке прибора в частном доме со скромным потреблением электроэнергии, а также на даче может быть применена схема с одной фазой, включающая прибор в домашнюю электросеть запасного источника. Внутри щитка должны помещаться лампы-индикаторы, сигнализирующие о том, что сеть или генератор включены.

Схема подключения

Типовые схемы подключения

Приобретая кабели для монтажа трехпозиционного устройства, необходимо учитывать максимальные значения рабочего тока в электроцепи. Если диаметр проводников превышает 6 мм2, для них покупают специальные наконечники. Менее толстые провода разрешается подключать напрямую к прибору, используя паяние или кольцевое разделывание.

Типовые схемы, подходящие для того или иного устройства, в том числе схема подключения переключателя с трех разных мест, приводятся в прилагающейся к нему технической документации. Некоторые из трехпозиционных изделий можно подключить не только на 3 полюса, но и на 1, 2 или 4 (возможное количество полюсов указывается в паспорте устройства). На вводе в квартиру устройство ставят в месте отвода от общего фазного проводника и нуля, чтобы отделить квартирную линию от генеральной магистрали. Производить монтаж выключателя и его последующую настройку можно только при выключенном электричестве. Современные изделия, рассчитанные на использование в квартирных щитах, обычно предполагают монтаж на DIN-рейку в 35 мм. Зажимы клемм у них маркируются цифрами, что позволяет избежать путаницы в процессе монтажных работ. После установки прибор, а также прилежащие контактные соединения необходимо чистить сухой ветошью хотя бы раз в 6 месяцев, предварительно обесточив сеть.

Как устройство для коммутации домашней сети позиционные ручные переключатели зачастую считаются устаревшим прибором. Тем не менее, легкость управления и установки, а также цена обеспечивают им некоторую популярность до сих пор.

Электрическое АПВ однократного действия

Для наглядности, рассмотрим работу устройства АПВ на примере простой схемы для выключателя 6-ЮкВ с пружинным приводом (например, ПП-67).

При подаче ключом управления КУ команды и включении выключателя, размыкаются блок-контакты В в цепи ЭВ и контакты готовности привода КГП, замыкаются контакты В и КГП в цепи заводки привода и в цепи ЭО, замыкаются блок-контакты БКА, После окончания заводкидки привода, контакты КГП раз­рывают цепь заводки и замыкаются в цепи включения — привод готов к АПВ. При отлючении выключа­теля ключом управления КУ, механически отключаются блок-контакты БКА, и схема АПВ не запускает­ся.

При аварийном отключении выключателя от защиты, контакты БКА остаются замкнутыми, замыкаются блок-контакты В в цепи ЭВ, и при введенной накладке Н1 « АПВ», по факту несоответствия положения выключателя и контактов БКА, запускается реле РВ выдержки времени АПВ. Включения выключателя при этом не происходит, так как сопротивление катушки ЭО значительно меньше, чем обмотки после­довательно включенного с ней реле времени РВ, и практически все напряжение прикладывается к об­мотке реле. С выдержкой времени АПВ, контакты РВ замыкаются, выкорачивая обмотку реле РВ, и за­мыкая цепь включения выключателя. При этом, выключатель включается, выпадает блинкер указательного реле РУ «Работа АПВ», реле РВ отпадает, замыкаются контакты В в цепях ЭО, а так же В и КГП в цепи заводки привода, размыкаются блок-контакты В и КГП в цепи ЭВ.

Читать еще:  Опель вектра выключатель фонарей заднего хода

Рис. 10.1. Схема однократного АПВ выключателя с пружинным приводом Обозначения на схеме:

В — блок-контакты положения выключателя:

БКА — блок-контакты аварийные, замыкаются при включении выключателя и размыкаются при опера­тивном отключении выключателя; при отключении от защиты, контакты остаются замкнутыми. КГП — контакты готовности привода к включению, выключающие двигатель после заводки привода, и разрешающие операцию включения.

AMP — автоматический моторный редуктор заводки пружин привода; КУ — ключ управления выключателем; РВ — реле времени АПВ; РУ — реле указательное «Работа АПВ»; Н1 — накладка «АПВ-АМР»;

ЭВ и ЭО — электромагниты включения и отключения выключателя.

Положение контактов соответствует аварийно отключенному положению выключателя и заведенному положению привода (выключатель готов к включению).

При успешном АПВ, привод заводится (около 20 сек) и схема снова готова к работе. Если АПВ не ус­пешное, или выключатель снова отключился от защиты до окончания заводки привода, схема АПВ больше не запускается. Так, за счет времени заводки привода, обеспечивается однократность АПВ. Для включения выключателя после неуспешного АПВ, необходимо перевести накладку Н1 в положение «AMP» и завести привод до состояния готовности к включению, а затем ключем КУ подать команду на включение выключателя. Если включатель включился успешно (ручное повторное включение — РПВ-успешное), накладка Н1 снова переводится в положение «АПВ», и после заводки привода, выключа­тель снова готов к АПВ.

Электрические АПВ однократного действия с автоматическим возвратом получили наиболее широкое распространение. Наиболее часто такие АПВ выполняются на базе комплектных устройств типа РПВ-58 (рис. 10.2.). В этом реле однократность АПВ обеспечивается за счет конденсатора С, который заря­жается только при включенном положении выключателя.

В рассматриваемой схеме дистанционное управление выключателем производится ключом управле­ния КУ типа МКСВФ, у которого предусмотрена фиксация положения последней операции. Поэтому после операции включения ключ остается в положении «Включено» (В2), а после операции отключения — в положении «Отключено» (02). Когда выключатель включен и ключ управления находится в положе­нии «Включено», к конденсатору С подводится плюс оперативного тока через контакты ключа, а минус через зарядный резистор R2. При этом конденсатор заряжен и схема АПВ находится в состоянии го­товности к действию, как показано на рис. 10.2.

При включенном выключателе реле положения «Отключено» РПО, осуществляющее контроль исправ­ности цепей включения, током не обтекается и его контакт в цепи пуска АПВ разомкнут. Пуск АПВ происходит при отключении выключателя под действием релейной защиты в результате воз­никновения несоответствия между положением ключа, которое не изменилось, и положением выклю­чателя, который теперь отключен. Несоответствие положений ключа управления и выключателя харак­теризуется тем, что через контакты ключа 1-3 на схему АПВ по-прежнему подается плюс оперативного тока, а ранее разомкнутый вспомогательный контакт (блок-контакт) выключателя БКВ переключился и замкнул цепь обмотки реле РПО, которое, срабатывая, подает минус на обмотку реле времени РВ1.

Рис. 10.2. Схема электрического АПВ однократного действия для линии с масляным выключателем При срабатывании реле времени размыкается его мгновенный размыкающий контакт РВ1.1, вводя в цепь обмотки реле дополнительное сопротивление (резистор R1). Это приводит к уменьшению тока в обмотке реле, благодаря чему обеспечивается его термическая стойкость при длительном прохожде­нии тока.

Спустя установленную выдержку реле времени замыкает замыкающий контакт РВ1.2 и подключает па­раллельную обмотку реле РП1 к конденсатору С. Реле РП1 при этом срабатывает от тока разряда кон­денсатора и, самоудерживаясь через свою вторую обмотку, включенную последовательно с обмоткой контактора КП, подает импульс на включение выключателя. Благодаря использованию последова­тельной обмотки реле РП1 обеспечивается необходимая длительность импульса для надежного вклю­чения выключателя, поскольку параллельная обмотка этого реле при разряде конденсатора обтекает­ся током кратковременно.. Выключатель включается, размыкается его вспомогательный контакт БКВ и реле РПО, РП1 и РВ1 возвращаются в исходное положение.

Если повреждение на линии было неустойчивым, то она остается в работе. После размыкания контакта реле времени конденсатор С начнет заряжаться через зарядный резистор R2. Сопротивление этого резистора выбирается таким, чтобы время заряда составляло 20-25 с. Таким образом, спустя указан­ное время, схема АПВ будет автоматически подготовлена к новому действию.

Если повреждение было устойчивым, то выключатель, включившись, снова отключится защитой, и вновь сработают реле РПО и РВ1. Реле РП1, однако, при этом второй раз работать не будет, так как конденсатор С был разряжен при первом действии АПВ и зарядиться еще не успел. Таким образом, рассмотренная схема обеспечивает однократное действие при устойчивом КЗ на линии. При оперативном отключении выключателя ключом управления КУ несоответствия не возникает и АПВ не действует, так как одновременно с подачей импульса на отключение выключателя контактами клю­ча 6-8 размыкаются контакты 1-3, чем снимается плюс оперативного тока со схемы АПВ. Поэтому сра­ботает только реле РПО, а реле РВ1 и РП1 не сработают. Одновременно со снятием оперативного то­ка контактами 1-3 КУ замыкаются контакты 2-4 и конденсатор С разряжается через сопротивление R3. При оперативном включении выключателя ключом управления готовность АПВ к действию наступает после заряда конденсатора С через 20-25 с.

При отключении линии защитой РЗ, когда действие АПВ не требуется, через резистор R3 производится разряд конденсатора С.

Для предотвращения многократного включения выключателя на устойчивое КЗ, что могло бы иметь место в случае застревания контактов реле РП1 в замкнутом состоянии, в схеме управления (рис. 10.2) устанавливается специальное промежуточное реле РБМ типа РП-232 с двумя обмотками: рабочей по­следовательной и удерживающей параллельной. Реле РБМ срабатывает при прохождении тока по ка­тушке отключения выключателя и удерживается в сработавшем положении до снятия команды на включение. При этом цепь обмотки КП размыкается размыкающим контактом РБМ, предотвращая включение выключателя.

На телемеханизированных подстанциях для управления выключателями используются ключи управле­ния без фиксации положения типа ПМОВ или МКВ, а для запоминания предыдущей команды управле­ния предусматриваются специальные реле фиксации команды. Указанные выше ключи управления имеют три положения: «Включить», «Отключить» и «Нейтральное», причем после операций включения и отключения ключ самовозвращается в нейтральное положение. В качестве реле фиксации используются двухпозиционные промежуточные реле типов РП8 и РП11, различающиеся количеством контактов. Схема включения обмоток и контактной системы реле РП11 приведена на рис. 10.3.

Рис. 10.3. Схема включения обмоток двухпозиционного промежуточного реле типа РП11 Промежуточное реле РП11 (РП8) имеет два электромагнита с обмотками Б и О, между которыми рас­положен якорь, связанный с контактной системой. Когда ток в обмотках обоих электромагнитов отсут­ствует, якорь реле находится в правом или левом положении, в зависимости от того, в обмотку какого электромагнита был подан последний импульс тока. Последовательно с обмотками электромагнитов включены вспомогательные контакты этого реле БВ и БО, поэтому напряжение может быть подано только на обмотку того электромагнита, который подготовлен к действию. При подаче напряжения на эту обмотку якорь реле перекидывается и, переходя через нейтральное положение, переключает как блокировочные, так и основные контакты. Контакты этого реле заменяют контакты ключа 1-3 в схеме АПВ. Ключ и устройство телемеханики действует на катушку реле РП-11.

Взамен электромеханического реле РПВ-58 ЧЭАЗ (г.Чебоксары, Россия) выпускает микроэлектронное реле РПВ-01. Характеристики реле РПВ-01 существенно не отличаются от РПВ-58, но оно имеет меньшие габариты и вес.

Выбор уставок однократных АПВ для линии с односторонним питанием Выдержка времени АПВ на повторное включение выключателя определяется двумя условиями:

1) Выдержка времени должна быть больше времени готовности привода выключателя, т.е.

где

— время готовности привода, которое может изменяться в пределах сек для разных типов приводов;

— время запаса, учитывающее непостоянство и погрешность реле времени АПВ; прини­мается равной 0,3-0,5 сек.

Читать еще:  Как подключить проходные выключатели сколько проводов

2) Для того чтобы повторное включение было успешным, необходимо, чтобы за время от момента отключения линии до момента повторного включения и подачи напряжения не только погасла электрическая дуга в месте КЗ, но и восстановились изоляционные свойства воздуха. Процесс восстановления изоляционных свойств, называемый деионизацией, требует некоторого времени. Следовательно, вы­держка времени АПВ на повторное включение должна быть больше времени деионизации, т. е.

(10.2) где

— время деионизации, составляющее сек.

При выборе уставок принимается большее значение из полученных по выражениям (10.1) и (10.2).

Следует отметить, что второе условие, как правило, обеспечивается тем, что время включения выклю­чателей составляет сек, т. е. больше времени, необходимого для деионизации. В некоторых слу­чаях выдержки времени принимаются больше определенных по выражениям (10.1) и (10.2), около 2-кЗ сек, что бывает целесообразно для повышения успешности действия АПВ на линиях, где наиболее часты повреждения вследствие набросов, падений деревьев и касаний проводов передвижными меха­низмами. Время автоматического возврата АПВ в исходное положение выбирается из условия обеспе­чения однократности действия. Для этого при повторном включении на устойчивое КЗ, возврат АПВ в исходное положение должен происходить только после того, как выключатель, повторно включенный от АПВ, вновь отключится релейной защитой, причем имеющей наибольшую выдержку времени. В рассмотренных выше схемах АПВ с использованием комплектных устройств типа РПВ-58, в которых время готовности реле АПВ к срабатыванию определяется временем заряда конденсатора, оно долж­но быть не меньше значения, определенного согласно выражению:

(10.3) где

— наибольшая выдержка времени защиты;

— время отключения выключателя.

Обычно время заряда конденсатора устройства РПВ-58 составляет 20-25 сек и, как правило, удовле­творяет выражению (10.3), микропроцессорные и микроэлектронные реле, в которых имеется функция АПВ, имеют обычно регулируемое время готовности. Уставка по времени готовности может быть при­нята такой же — 30 сек. При работе линии в зоне, где могут быть частые случаи коротких замыканий: сильный ветер, гололед — это время целесообразно увеличить до 60-90 сек. Это позволит спасти от повреждения выключатель с ограниченным ресурсом отключения от выхода из строя при многократных КЗ.

Дата добавления: 2015-05-05 ; просмотров: 4555 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Схема фиксация положения выключателя

В последние 6-8 лет в России широко применяются элегазовые выключатели 110 кВ и выше как отечественного, так и зарубежного производства. В статье Кима Михайловича Добродеева рассмотрены некоторые особенности схем управления современных элегазовых выключателей и даны рекомендации по адаптации этих схем к автоматике управления выключателей, выполненной на традиционных отечественных принципах.

Элегазовые выключатели 110 кВ и выше

Некоторые особенности схем автоматики и управления

Ким Добродеев,
к.т.н., главный специалист института «Нижегородскэнергосетьпроект»,
г. Нижний Новгород

Одновременно с началом использования элегазовых выключателей происходило активное внедрение микропроцессорных (МП) устройств релейной защиты и автоматики (РЗА), в том числе и автоматики управления выключателей (АУВ). Автор данной статьи принимал участие в проектных работах и в разработке ряда отечественных МП устройств РЗА, выпускаемых НПП «ЭКРА», что позволяет остановиться на некоторых вопросах, возникавших при выполнении этих работ, и принятых решениях.

Блокировка от пульсации выключателя

В апреле-мае 1998 года на ПС Киндери Татарской энергосистемы устанавливался взамен воздушного выключателя 500 кВ первый из четырех элегазовых выключателей типа ELF SP 7-2 фирмы АВВ, имеющий пружинно-гидравлический привод. Особенность схемы управления этого выключателя заключается в том, что пофазные реле блокировки от многократных включений выключателя K13L A, B, C (см. рис.1), установленные в распределительном шкафу, имеют одну шунтовую обмотку и обеспечивают блокировку при любом включении выключателя, в том числе и в случае, когда привод «не садится на защелку». В фирменной документации назначение этих реле определено для блокировки от пульсаций (anti-pumping); в дальнейшем изложении данные реле будем называть выносными, имея в виду место их установки вблизи выключателя. Отмеченная особенность схемы управления в разных модификациях характерна для других элегазовых выключателей фирмы АВВ, а также для выключателей компаний Siemens, Alstom и AREVA.

Рис. 1 Упрощенная схема узла включения выключателя ELF SP7-2

SOA,B,C – вспомогательные контакты выключателя
S1LA,В,С – контакты гидропружинного привода
К12 – контакт реле-повторителя датчика давления элегаза
У1LA,В,С – электромагниты включения

В процессе пусконаладочных испытаний указанного выше выключателя, в существующей электромеханической схеме АУВ которого цепь включения выполнена трехфазной, выявилась необходимость включения в цепь обмотки реле положения «отключено» KQT последовательно соединенных размыкающих контактов реле блокировки от пульсаций и размыкающих вспомогательных контактов полюсов выключателя.

Дело в том, что при включенном положении выключателя и отсутствии цепочки из этих контактов образуется параметрическая цепь, состоящая из обмотки реле KQT и обмоток пофазных реле блокировки K13L А, В, С. Функционирование этой цепи зависит от параметров реле (сопротивления обмоток и напряжений срабатывания и возврата), при этом возможны следующие нештатные ситуации:

  • реле К13 не возвращаются в исходное положение и удерживают цепи электромагнитов включения разомкнутыми, что приводит к отказу включения выключателя при действии АПВ;
  • если в параметрической цепи реле KQT сработает, то оно выведет из действия сигнализацию неисправности цепей отключения на включенном выключателе.

Для разрыва параметрической цепи при включенном положении выключателя в цепь реле KQT введены размыкающие вспомогательные контакты выключателя SO А, В, С.

При длительном удерживании ключа управления в положении «включить» и включении выключателя на короткое замыкание реле K13L A, B, C находятся в сработанном состоянии. При отключении выключателя от релейной защиты вспомогательные контакты возвращаются в исходное состояние и замыкают цепь реле KQT, при этом ситуация с параметрической цепью повторяется после возврата реле КСС. Для разрыва параметрической цепи в этом режиме, т.е. при отключенном выключателе, в цепь реле KQT введены размыкающие контакты реле блокировки от пульсации K13L А, В, С. При пофазных цепях включения размыкающие вспомогательные контакты выключателя и реле пульсации вводятся пополюсно в цепи обмотки реле KQT А, В, С.

Рассмотренные выше решения, разработанные совместно со специалистами ПС Киндери и ЦСРЗА ОАО «Татэнерго», нашли применение в схемах АУВ выключателей 110 кВ и выше в ряде других энергосистем.

Блокировка по давлению элегаза и запасу энергии привода

В выключателях фирмы АВВ технологическая автоматика, контролирующая давление элегаза и запас энергии привода, выполняется таким образом, что контактные выходы датчиков действуют независимо на блокировку управления по цепям электромагнитов включения (ЭМВ) – первых электромагнитов отключения (ЭМО1) и по цепям вторых электромагнитов отключения (ЭМО2). Это решение, которое следует выдвигать как типовое требование, обеспечивает возможность отключения выключателя при неисправности оперативного тока ЭМО1 или ЭМО2. Данное требование не выполняется в известных нам выключателях компании Siemens и в выключателе S1-145 фирмы AREVA, что вынуждает вносить необходимые изменения и дополнения в цепях АУВ при вводе этих выключателей в эксплуатацию.

Особо следует остановиться на схеме управления выключателя 500 кВ GL-317 фирмы AREVA. Автоматическое повторное и оперативное включение выключателя выполняется с помощью промежуточного реле, установленного в распределительном шкафу и действующего на ЭМВ трех полюсов. В этом же шкафу установлены девять промежуточных реле, предназначенных для контроля исправности каждого электромагнита управления в обоих положениях выключателя и подключенных к соответствующим цепям через резисторы.

Указанные особенности схемы управления затрудняют или исключают возможность применения электромеханической или микропроцессорной АУВ, выполненной по традиционным отечественным принципам. Кроме того, данная схема мониторинга имеет ограниченную зону: не контролируются цепи управления, начиная с пункта управления, и контакты реле блокировки по давлению элегаза на входе этих цепей в распределительном шкафу.

Удерживание сигналов управления и защита электромагнитов

Летом 1998 года автором статьи была выполнена работа «Терминал автоматики управления, АПВ и УРОВ выключателей 110-220 кВ. Техническое предложение. Анализ и обоснование». В ней были предложены следующие решения, нашедшие практическое применение.

АУВ с сериесным удерживанием

В отечественных схемах АУВ с электромеханическими (ЭМ) реле завершение начатых операций включения и отключения выключателя обеспечивается в общем случае с помощью промежуточных реле, сериесная обмотка которых включена в цепь соответствующего электромагнита управления (ЭМУ), а замыкающие контакты шунтируют контакты устройств РЗА в цепях управления.

Следствием данной схемы удерживания сигналов управления, которую можно назвать сериесной, является длительное протекание тока через ЭМУ при отказе привода выключателя, что может привести к повреждению электромагнитов. В выключателях с пофазным приводом повреждение ЭМУ предотвращается защитой от непереключения фаз (ЗНФ), которая вторым действием снимает «минус» с ЭМУ с помощью контакторов постоянного тока. В упомянутой работе было предложено контролировать длительность нахождения в состоянии после срабатывания указанных сериесных реле и при отказе привода действовать на отключение автоматических выключателей с дистанционным расцепителем, снимая оперативный ток с ЭМУ.

Читать еще:  Блок силовых розеток 19 8 розеток с выключателем 16а

В конце 1998 года автором была разработана эскизная схема МП терминала АУВ выключателей 110-220 кВ, в которой контроль тока в ЭМУ осуществлялся с помощью оптоэлектронных входов, включенных на резистивные шунты в цепях соответствующих ЭМУ. Эти сигналы использовались в терминале для защиты ЭМУ от длительного протекания тока, а также для удерживания сигналов управления и реализации функции блокировки от пульсаций выключателя, выполненной по традиционному отечественному принципу, как в двухобмоточных реле KBS. Данные предложения впоследствии были реализованы НПП «ЭКРА» в МП терминалах БЭ2704 базовой версии 010, БЭ 2704 071 и в соответствующих шкафах ШЭ 2607.

АУВ с шунтовым удерживанием

Также был предложен вариант схемы, который в отличие от схемы АУВ с сериесным удерживанием сигналов управления осуществляет так называемое шунтовое удерживание.

Для этой цели устройства РЗА действуют одним контактом на ЭМУ, а другим – на специальные промежуточные реле, контакты которых шунтируют контакты РЗА в цепях управления и обеспечивают разрыв тока в ЭМУ при отказе привода. В качестве таких реле можно использовать, например, реле типа RXME1 (RXME18) фирмы АВВ и реле RG25 компании RELPOL. Первое из них обеспечивает при напряжении 220 кВ отключение тока 1 А каждым контактом при двухконтактном варианте, а второе – отключение тока до 2,5 А при индуктивной нагрузке (по данным ЗАО «РЕЛПОЛ-ЭЛТИМ»).

Если потребление ЭМУ существенно превышает возможности указанных реле, можно применить вместо них малогабаритные контакторы, собственное время отключения которых некритично, поскольку в МП терминалах РЗА можно обеспечить заданную длительность замкнутого состояния контактов выходных реле.

Применение шунтового удерживания предполагает, как правило, наличие выносного реле блокировки от пульсации выключателя. Шунтовое удерживание сигналов управления предотвращает возможность длительного протекания тока через ЭМУ при отказе привода и снимает необходимость их защиты в данном режиме. Исключение составляет режим с наложением отказа реле управления в форме сваривания контакта на отказ привода – если данный режим признать возможным, тогда необходимо выполнять защиту ЭМУ.

Кардинальным решением, исключающим необходимость защиты ЭМУ от длительного протекания тока, является выполнение электромагнитов с длительной термической стойкостью, в том числе с помощью специальных мероприятий.

Шунтовой принцип удерживания сигналов управления имеет очевидный недостаток, заключающийся в необходимости увеличения в два раза количества контактов выходных реле, действующих на включение и отключение выключателя. Этот недостаток может быть исключен в тех случаях, когда дополнительное замедление в 20 мс, вносимое упомянутыми выше реле, некритично. В этих случаях контактные выходы микропроцессорных устройств РЗА могут действовать непосредственно на данные реле, а те – на электромагниты управления.

Шунтовой принцип удерживания сигналов управления реализован институтом «Нижегородскэнергосетьпроект» в проекте реконструкции устройств РЗА ВЛ 500 кВ Вешкайма-Ключики со стороны ПС Ключики.

Наблюдаемость и управляемость выключателя
при неисправном МП терминале АУВ

Опыт разработки и проектирования МП устройств РЗА выявил два требования, которые необходимо выполнять в режиме с неисправным терминалом АУВ: управляемости и наблюдаемости выключателя. Первое требование реализуется с помощью промежуточных командных реле включения КСС и отключения КСТ, устанавливаемых в шкафах АУВ и действующих непосредственно на ЭМУ, а также на входы терминалов для реализации других функций АУВ. Прямое действие реле КСС на включение выключателя можно считать допустимым, если имеется выносное реле блокировки от пульсации. Очевидно, что устройства защиты данного присоединения должны действовать на отключение помимо терминала АУВ. Можно отметить также, что в рассматриваемом режиме не обеспечивается удерживание сигналов управления с сериесным принципом, если он реализован в терминале АУВ.

Наблюдаемость выключателя по лампам сигнализации положения обеспечивается в режиме с неисправным терминалом АУВ в том случае, если имеется внешнее двухпозиционное ЭМ реле фиксации сигналов управления KQQ. С этой целью данное реле (типа РЭП38Д) с соответствующей типовой схемой включения было предусмотрено в упомянутом выше проекте РЗА ВЛ 500 кВ Вешкайма-Ключики, в котором в качестве терминала АУВ, АПВ и УРОВ использовались терминалы типа REL 511 версии 2.3 фирмы АВВ. В этих терминалах были сконфигурированы все типовые узлы АУВ. Для выполнения функции реле KQQ и реле фиксации отключенного положения выключателя для целей противоаварийной автоматики использовались RS-триггеры с памятью.

Выводы

Схемы управления современных элегазовых выключателей должны обеспечивать:

© ЗАО «Новости Электротехники»
Использование материалов сайта возможно только с письменного разрешения редакции
При цитировании материалов гиперссылка на сайт с указанием автора обязательна

Сигнализация положения коммутационных аппаратов.

Сигнализация положения выключателей выполняется, как правило, с помощью сигнальных ламп, расположенных или у ключа управления или встроенных в мнемоническую схему щита управления. Если ключом управления выключатель включен и находится во включенном положении, горит красная лампа ровным светом, при отключенном положении горит зеленая лампа ровным светом. Для привлечения внимания оперативного персонала при автоматическом отключении или включении выключателя (ключом управления оператор действие не производил) выполняется мигающее свечение сигнальных ламп. При аварийном отключении выключателя кроме мигания зеленой лампы раздается звуковой сигнал, чтобы привлечь внимание персонала, а мигающая лампа укажет отключившийся аппарат.

На рис. 5 показана схема сигнализации положения выключателей при использовании малогабаритных КУ. Так как сами КУ не имеют фиксированных положений, имеют небольшое число пар контактов, в схемах сигнализации используются специальные реле фиксации команд КQQ. Это двухпозиционное реле, имеющее две обмотки, с помощью которых реле переключается в любое из двух фиксированных положений. Переключение осуществляется подачей импульса в обмотку, контакт в цепи которой замкнут. При протекании тока по обмотке якорь КQQ меняет положение и переключает свои контакты. Новое положение сохраняется до тех пор, пока не будет подан импульс во вторую обмотку, подготовленную к протеканию тока.

Состояние схемы, показанной на рис.5, соответствует отключенному положению выключателя. Создана цепь питания зеленой лампы: +ШУ, КQQ.5, R2, SQT, лампа HLG, ­ ШУ, которая горит ровным светом. При подаче команды «включить», срабатывает реле КСС, подающее питание на обмотку КQQ.1. Реле КQQ меняет положение якоря, замыкая контакты КQQ.2, КQQ.3, КQQ.6 и размыкая KQQ.1, KQQ.4 и KQQ.5. После завершения операции включения вспомогательные контакты в приводе меняют свое положение, образуется цепь: +ШУ, КQQ.3, R1, SQC, лампа HLR, ­ШУ. Горит ровным светом красная лампа.

При отключении выключателя от релейной защиты аварийная сигнализация) зеленая лампа загорится мигающим светом через контакты КQQ.6.

Одновременно сработает звуковая аварийная сигнализация – сирена (рис. 5а).

Действие звуковой аварийной сигнализации может быть прекращено вручную нажатием кнопки центрального съема сигнала или автоматически с некоторой выдержкой времени. Действие световой аварийной сигнализации прекращается приведением ключа или реле КQQ в положение «отключено» Эта операция носит название квитирование сигнала.

Схемы управления выключателями позволяют также выполнять предупредительную сигнализацию, контролирующую исправность цепей управления: при отключенном положении выключателя контролируется сопротивление цепи включения, при включенном – цепи отключения. Принцип выполнения аналогичен аварийной сигнализации (световой и звуковой сигнал). При этом звуковой сигнал выполняется отличным по тону от аварийного (обычно звоночек).

На рис. 6 показана принципиальная схема запуска устройств предупреждающей сигнализации в случае обрыва цепей управления. Для контроля цепей используются два промежуточных реле: реле положения «включено» КQC, фиксирующее включенное положение выключателя и контролирующее цепь отключения, и реле положения «отключено» КQT, фиксирующее отключенное положение выключателя и исправность цепи включения.

Запуск сигнализации обрыва цепей управления происходит через последовательно включенные размыкающие контакты КQC и КQT. При исправном состоянии цепей управления обмотка одного реле обтекается током, а другого обесточена. В результате цепь подачи сигнала обесточена. В случае обрыва обмотки обоих реле оказываются обесточенными, и происходит запуск сигнализации.

При использовании микропроцессорных устройств релейной защиты и управления принципы выполнения схем остаются теми же.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector