Gc-helper.ru

ГК Хелпер
26 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Ток динамической стойкости выключателя что это

Выбор и проверка высоковольтных выключателей

Выключатель — это коммутационный аппарат, предназначенный для включения и отключения тока.

Выключатель является основным аппаратом в электрических установках, он служит для отключения и включения цепи в любых режимах: длительная нагрузка, перегрузка, короткое замыкание. Наиболее тяжёлой и ответственной операцией является отключение токов КЗ и включение на существующее короткое замыкание.

К выключателям высокого напряжения предъявляют следующие требования:

1) надёжное отключение любых токов (от десятков ампер до номинального тока отключения);

2) быстрота действия, т.е. наименьшее время отключения;

3) пригодность для быстродействующего автоматического повторного включения (АПВ), т.е. быстрое включение выключателя сразу же после отключения;

4) возможность по фазного (по полюсного) управления для выключателей 110 кВ и выше;

5) лёгкость ревизии и осмотра контактов;

6) взрыво- и пожаробезопасность;

7) удобство транспортировки и эксплуатации.

Выключатели высокого напряжения должны длительно выдерживать номинальный ток Iном и номинальное напряжение Uном.

Выбор выключателей производится по следующим условиям:

Все выключатели характеризуются номинальным напряжением (Uном) и номинальным рабочим током (Iном), которые они выдерживают длительное время. Поэтому при выборе аппарата необходимо соблюдать условия:

где: Uном.а. и Iном.а. – номинальное напряжение и номинальный ток аппарата; Uном.с. и Iраб.макс. – номинальное напряжение сети и наибольший ток утяжеленного режима цепи в которой устанавливается данный выключатель. Выключатели по номинальному напряжению и номинальному току, подлежат проверке на термическую и динамическую стойкость при токах КЗ и на отключающую способность.

По термической стойкости проверка осуществляется по расчетному импульсу квадратичного тока короткого замыкания. Значение теплового импульса тока к.з. (кА 2 ×с) определяется по формуле:

, (9.3)

где: t – расчетное время действия тока КЗ, с;

Ta – постоянная времени затухания апериодической составляющей, с;

Iпо – начальное значение периодической составляющей тока к.з., кА.

Расчетное время действия тока КЗ определяется по выражению

, (9.4)

где: tв. – время отключения выключателя, с;

tз – время срабатывание релейной защиты, с.

Значение tз зависит от ступени селективности релейной защиты. Приближенно можно принять 0,3 – 0,5 с (для быстродействующих защит).

Значение постоянной времени затухания апериодической составляющей тока КЗ зависит от места короткого замыкания. Для учебного проектирования значения Ta можно принять в пределах 0,01 – 0,2 с.

Зная значение теплового импульса тока КЗ в цепи установки выбранного выключателя можно записать условие проверки на термическую стойкость

, (9.5)

где: Iт – ток термической стойкости выбранного выключателя, кА;

tт – допустимая длительность протекания тока термической стойкости выключателя, с.

Обе величины паспортные данные.

По электродинамической стойкости при токах К.З. выбранный выключатель проверяется по одному из условий:

или (9.6)

где: Iпо – начальное значение периодической составляющей тока к.з., кА.

iу – ударный ток к.з., кА.

Iдин – начальное действующие значение предельного сквозного тока данного выключателя, кА. (справочные данные)

Iм.дин. – амплитудное значение (наибольший пик) предельного сквозного тока выключателя, кА. (справочные данные)

При проверке выключателя на отключающую способность симметричного тока к.з. необходимо соблюдение следующего условия:

(9.7)

где: Iотк.ном. – номинальный ток отключения выключателя, кА. (справочные данные)

Iпt – периодическая составляющая тока к.з. в момент расхождения выключателя, кА (расчетная величина)

Таким образом, если соблюдать все условия выбора и проверки, можно считать, что выключатель выбран верно, в противном случае необходимо подобрать другой выключатель.

Форум / Электрика / Коммутационная стойкость автоматов и не только.

Коммутационная стойкость автоматов и не только.

19 июля 2005 г., 09:28

Victor zmey
профи

Re: Коммутационная стойкость автоматов и не только.

19 июля 2005 г., 09:38

Если бы Эдисон не изобрел электричество — мы до сих пор бы смотрели телевизор при свечах

Электрик
специалист

Re: Коммутационная стойкость автоматов и не только.

19 июля 2005 г., 09:46

Сергей Музыка1
профи

Re: Коммутационная стойкость автоматов и не только.

19 июля 2005 г., 11:03

Re: Коммутационная стойкость автоматов и не только.

19 июля 2005 г., 11:46

Аспирант
профи

Re: Коммутационная стойкость автоматов и не только.

19 июля 2005 г., 12:10

Генерируем — Мысли умные и не очень.

Re: Коммутационная стойкость автоматов и не только.

19 июля 2005 г., 12:33

Аспирант
профи

Re: Коммутационная стойкость автоматов и не только.

19 июля 2005 г., 12:45

Генерируем — Мысли умные и не очень.

Re: Коммутационная стойкость автоматов и не только.

19 июля 2005 г., 13:35

Lumier
новичок

Re: Коммутационная стойкость автоматов и не только.

19 июля 2005 г., 13:51

Стеснительных людей нет. Просто некоторым нечем хвастаться.

Re: Коммутационная стойкость автоматов и не только.

19 июля 2005 г., 14:20

Re: Коммутационная стойкость автоматов и не только.

19 июля 2005 г., 14:30

Lumier
новичок

Re: Коммутационная стойкость автоматов и не только.

19 июля 2005 г., 14:40

Стеснительных людей нет. Просто некоторым нечем хвастаться.

Ren
профи

Re: Коммутационная стойкость автоматов и не только.

19 июля 2005 г., 14:47

Читать еще:  Схема автоматический выключатель телевизора

ГОСТ Р 51778-2001
ЩИТКИ РАСПРЕДЕЛИТЕЛЬНЫЕ ДЛЯ ПРОИЗВОДСТВЕННЫХ
И ОБЩЕСТВЕННЫХ ЗДАНИЙ

п. 6.6.6 Отключающая способность защитных аппаратов, устанавливаемых на вводах щитков, должна быть не менее 6 кА на номинальные токи до 63 А и 10 кА — на номинальные токи до 125 А.
Отключающая способность вводных защитных аппаратов на номинальные 160, 250 А должна быть не ниже значений токов короткого замыкания, приведенных в таблице 1. (12 кА действующее, 20 кА пиковое)
Защитные аппараты групповых цепей следует выбирать с отключающей способностью не менее 3 кА.

Re: Коммутационная стойкость автоматов и не только.

19 июля 2005 г., 15:05

По теме — перечитал еще раз весь каталог, нигде нет упоминания про влияние коммутационной стойкости на селективность.

Сергей Музыка1
профи

Re: Коммутационная стойкость автоматов и не только.

19 июля 2005 г., 15:06

Сергей Музыка1
профи

Re: Коммутационная стойкость автоматов и не только.

19 июля 2005 г., 15:14

Re: Коммутационная стойкость автоматов и не только.

19 июля 2005 г., 15:18

В вопросе автоматы с одинаковыми время-токовыми.

Сергей Музыка1
профи

Re: Коммутационная стойкость автоматов и не только.

19 июля 2005 г., 15:30

AndY
специалист

Re: Коммутационная стойкость автоматов и не только.

19 июля 2005 г., 15:33

Re: Коммутационная стойкость автоматов и не только.

19 июля 2005 г., 15:41

Сообщения рекламного характера следует размещать в барахолке !

Выбор силового выключателя 6 кВ

Рассмотрим пример выбора выключателя в сети 6(10) кВ. В нашем случае, нужно выбрать элегазовый выключатель 6 кВ, типа LF (фирмы Schneider Electric), который будет установлен в ячейку КРУ-6 кВ типа Mcset (фирмы Schneider Electric) для питания силового трансформатора типа Minera (фирмы Schneider Electric) мощностью 2500 кВА.

Выбирать выключатель, мы должны из условий: — номинальное напряжение Uуст ≤ Uном;

1. Рассматривая каталожные данные на элегазовые выключатели серии LF и предварительно выбираем выключатель типа LF1 на напряжение 6 кВ, Uуст=6 кВ ≤ Uном=6кВ (условие выполняется);

  • номинальный ток Iрасч

Выбранный выключатель соответсвуют: Iном.=630 А > Iрасч =240,8 А;

3. Проверяем выключатель по отключающей способности.

Согласно ГОСТа 687-78E отключающая способность выключателя представлена тремя показателями:

  • номинальным током отключения Iоткл.;
  • допустимым относительным содержанием апериодической составляющей тока βном;
  • нормированные параметры восстанавливающего напряжения.

3.1 Определяем номинальный ток отключения Iоткл. и βном отнесенные к времени τ — времени отключения выключателя, равно:

τ = tзmin + tc.в = 0,01 + 0,048 = 0,058 (сек)

  • tзmin=0,01 сек. – минимальное время действия релейной защиты (в данном случае, быстродействующей защитой является токовая отсечка (ТО));
  • tc.в – собственное время отключения выключателя (согласно каталожных данных на выключатель LF1 равно 48 мс или 0,048 сек)

3.2 Номинальный ток отключения Iоткл., находим по каталогу: Iоткл.=25 кА.

3.3 Рассчитываем апериодическую состовляющую тока короткого замыкания:

где: Iп.о=7,625 кА – расчетный ток короткого замыкания на шинах 6 кВ.
Постоянную времени Та выбираем из таблицы 1, согласно таблицы для распределительных сетей напряжением 6-10 кВ Та=0,01.

Таблица 1 — Значение постоянной времени затухания апериодической составляющей тока короткого замыкания и ударного коэффициента

3.4 Определяем апериодическую составляющую в отключении тока при времени τ=0,058 сек.

где: βном- допустимое относительное содержание апериодической состовляющей, опеределяем по кривой βном=f(τ) приведенном в ГОСТе 687-78E либо можно найти по каталогам.

Рис.1 — Допустимое относительное содержание апериодической составляющей

Если βном ≤ 0,2, то следует принимать равный нулю.

3.5 Определяем тепловой импульс, который выделяется при токе короткого замыкания:

  • tоткл.= tр.з.+ tо.в=0,01+0,07=0,08 сек.
  • tр.з. – время действия основной защиты (токовая отсечка) трансформатора, равное 0,01 сек.
  • tо.в – полное время отключения выключателя LF1 выбирается из каталога, равное 0,07 сек.

3.6 Проверяем на электродинамическую стойкость по условию:

iу=20,553 кА ≤ iпр.с=64 кА (условие выполняется) где:
iу=20,553 кА – расчетный ударный ток КЗ;
iпр.с= 64 кА – ток динамической стойкости, выбирается из каталога.

3.7 Определим предельный термический ток термической стойкости, исходя из каталога: При этом должно выполнятся условие:

  • Iтер. = 25 кА — предельный ток термической стойкости, выбранный по каталогу;
  • tтер= 3 сек. — длительность протекания тока термической стойкости, согласно каталога.

Все расчетные и каталожные данные, сводим в таблицу 2

ПУЭ: Глава 1.4. Выбор электрических аппаратов и проводников по условиям короткого замыкания

Область применения

1.4.1. Настоящая глава Правил распространяется на выбор и применение по условиям КЗ электрических аппаратов и проводников в электроустановках переменного тока частотой 50 Гц, напряжением до и выше 1 кВ.

Общие требования

1.4.2. По режиму КЗ должны проверяться (исключения см. в 1.4.3):

1. В электроустановках выше 1 кВ:

а) электрические аппараты, токопроводы, кабели и другие проводники, а также опорные и несущие конструкции для них;

б) воздушные линии электропередачи при ударном токе КЗ 50 кА и более для предупреждения схлестывания проводов при динамическом действии токов КЗ.

Кроме того, для линий с расщепленными проводами должны быть проверены расстояния между распорками расщепленных проводов для предупреждения повреждения распорок и проводов при схлестывании.

Читать еще:  Где ставить выключатель внутри или снаружи

Провода ВЛ, оборудованные устройствами быстродействующего автоматического повторного включения, следует проверять и на термическую стойкость.

2. В электроустановках до 1 кВ — только распределительные щиты, токопроводы и силовые шкафы. Трансформаторы тока по режиму КЗ не проверяются.

Аппараты, которые предназначены для отключения токов КЗ или могут по условиям своей работы включать короткозамкнутую цепь, должны, кроме того, обладать способностью производить эти операции при всех возможных токах КЗ.

Стойкими при токах КЗ являются те аппараты и проводники, которые при расчетных условиях выдерживают воздействия этих токов, не подвергаясь электрическим, механическим и иным разрушениям или деформациям, препятствующим их дальнейшей нормальной эксплуатации.

1.4.3. По режиму КЗ при напряжении выше 1 кВ не проверяются:

1. Аппараты и проводники, защищенные плавкими предохранителями с вставками на номинальный ток до 60 А, — по электродинамической стойкости.

2. Аппараты и проводники, защищенные плавкими предохранителями независимо от их номинального тока и типа, — по термической стойкости.

Цепь считается защищенной плавким предохранителем, если его отключающая способность выбрана в соответствии с требованиями настоящих Правил и он способен отключить наименьший возможный аварийный ток в данной цепи.

3. Проводники в цепях к индивидуальным электроприемникам, в том числе к цеховым трансформаторам общей мощностью до 2,5 МВ·А и с высшим напряжением до 20 кВ, если соблюдены одновременно следующие условия:

а) в электрической или технологической части предусмотрена необходимая степень резервирования, выполненного так, что отключение указанных электроприемников не вызывает расстройства технологического процесса;

б) повреждение проводника при КЗ не может вызвать взрыва или пожара;

в) возможна замена проводника без значительных затруднений.

4. Проводники к индивидуальным электроприемникам, указанным в п. 3, а также к отдельным небольшим распределительным пунктам, если такие электроприемники и распределительные пункты являются неответственными по своему назначению и если для них выполнено хотя бы только условие, приведенное в п. 3, б.

5. Трансформаторы тока в цепях до 20 кВ, питающих трансформаторы или реактированные линии, в случаях, когда выбор трансформаторов тока по условиям КЗ требует такого завышения коэффициентов трансформации, при котором не может быть обеспечен необходимый класс точности присоединенных измерительных приборов (например, расчетных счетчиков); при этом на стороне высшего напряжения в цепях силовых трансформаторов рекомендуется избегать применения трансформаторов тока, не стойких к току КЗ, а приборы учета рекомендуется присоединять к трансформаторам тока на стороне низшего напряжения.

6. Провода ВЛ (см. также 1.4.2, п. 1, б).

7. Аппараты и шины цепей трансформаторов напряжения при расположении их в отдельной камере или за добавочным резистором, встроенным в предохранитель или установленным отдельно.

1.4.4. При выборе расчетной схемы для определения токов КЗ следует исходить из предусматриваемых для данной электроустановки условий длительной ее работы и не считаться с кратковременными видоизменениями схемы этой электроустановки, которые не предусмотрены для длительной эксплуатации (например, при переключениях). Ремонтные и послеаварийные режимы работы электроустановки к кратковременным изменениям схемы не относятся.

Расчетная схема должна учитывать перспективу развития внешних сетей и генерирующих источников, с которыми электрически связывается рассматриваемая установка, не менее чем на 5 лет от запланированного срока ввода ее в эксплуатацию.

При этом допустимо вести расчет токов КЗ приближенно для начального момента КЗ.

1.4.5. В качестве расчетного вида КЗ следует принимать:

1. Для определения электродинамической стойкости аппаратов и жестких шин с относящимися к ним поддерживающими и опорными конструкциями — трехфазное КЗ.

2. Для определения термической стойкости аппаратов и проводников — трехфазное КЗ; на генераторном напряжении электростанций — трехфазное или двухфазное в зависимости от того, какое из них приводит к большему нагреву.

3. Для выбора аппаратов по коммутационной способности — по большему из значений, получаемых для случаев трехфазного и однофазного КЗ на землю (в сетях с большими токами замыкания на землю); если выключатель характеризуется двумя значениями коммутационной способности — трехфазной и однофазной — соответственно по обоим значениям.

1.4.6. Расчетный ток КЗ следует определять, исходя из условия повреждения в такой точке рассматриваемой цепи, при КЗ в которой аппараты и проводники этой цепи находятся в наиболее тяжелых условиях (исключения см. в 1.4.7 и 1.4.17, п. 3). Со случаями одновременного замыкания на землю различных фаз в двух разных точках схемы допустимо не считаться.

1.4.7. На реактированных линиях в закрытых распределительных устройствах проводники и аппараты, расположенные до реактора и отделенные от питающих сборных шин (на ответвлениях от линий — от элементов основной цепи) разделяющими полками, перекрытиями и т. п., набираются по току КЗ за реактором, если последний расположен в том же здании и соединение выполнено шинами.

Шинные ответвления от сборных шин до разделяющих полок и проходные изоляторы в последних должны быть выбраны исходя из КЗ до реактора.

Читать еще:  Нормы по температуре выключателей

1.4.8. При расчете термической стойкости в качестве расчетного времени следует принимать сумму времен, получаемую от сложения времени действия основной защиты (с учетом действия АПВ), установленной у ближайшего к месту КЗ выключателя, и полного времени отключения этого выключателя (включая время горения дуги).

При наличии зоны нечувствительности у основной защиты (по току, напряжению, сопротивлению и т. п.) термическую стойкость необходимо дополнительно проверять, исходя из времени действия защиты, реагирующей на повреждение в этой зоне, плюс полное время отключения выключателя. При этом в качестве расчетного тока КЗ следует принимать то значение его, которое соответствует этому месту повреждения.

Аппаратура и токопроводы, применяемые в цепях генераторов мощностью 60 МВт и более, а также в цепях блоков генератор — трансформатор такой же мощности, должны проверяться по термической стойкости, исходя из времени прохождения тока КЗ 4 с.

Определение токов короткого замыкания для выбора аппаратов и проводников

1.4.9. В электроустановках до 1 кВ и выше при определении токов КЗ для выбора аппаратов и проводников и определения воздействия на несущие конструкции следует исходить из следующего:

1. Все источники, участвующие в питании рассматриваемой точки КЗ, работают одновременно с номинальной нагрузкой.

2. Все синхронные машины имеют автоматические регуляторы напряжения и устройства форсировки возбуждения.

3. Короткое замыкание наступает в такой момент времени, при котором ток КЗ будет иметь наибольшее значение.

4. Электродвижущие силы всех источников питания совпадают по фазе.

5. Расчетное напряжение каждой ступени принимается на 5% выше номинального напряжения сети.

6. Должно учитываться влияние на токи КЗ присоединенных к данной сети синхронных компенсаторов, синхронных и асинхронных электродвигателей. Влияние асинхронных электродвигателей на токи КЗ не учитывается при мощности электродвигателей до 100 кВт в единице, если электродвигатели отделены от места КЗ одной ступенью трансформации, а также при любой мощности, если они отделены от места КЗ двумя или более ступенями трансформации либо если ток от них может поступать к месту КЗ только через те элементы, через которые проходит основной ток КЗ от сети и которые имеют существенное сопротивление (линии, трансформаторы и т. п.).

1.4.10. В электроустановках выше 1 кВ в качестве расчетных сопротивлений следует принимать индуктивные сопротивления электрических машин, силовых трансформаторов и автотрансформаторов, реакторов, воздушных и кабельных линий, а также токопроводов. Активное сопротивление следует учитывать только для ВЛ с проводами малых сечений и стальными проводами, а также для протяженных кабельных сетей малых сечений с большим активным сопротивлением.

1.4.11. В электроустановках до 1 кВ в качестве расчетных сопротивлений следует принимать индуктивные и активные сопротивления всех элементов цепи, включая активные сопротивления переходных контактов цепи. Допустимо пренебречь сопротивлениями одного вида (активными или индуктивными), если при этом полное сопротивление цепи уменьшается не более чем на 10%.

1.4.12. В случае питания электрических сетей до 1 кВ от понижающих трансформаторов при расчете токов КЗ следует исходить из условия, что подведенное к трансформатору напряжение неизменно и равно его номинальному напряжению.

1.4.1З. Элементы цепи, защищенной плавким предохранителем с токоограничивающим действием, следует проверять на электродинамическую стойкость по наибольшему мгновенному значению тока КЗ, пропускаемого предохранителем.

Выбор проводников и изоляторов, проверка несущих конструкций по условиям динамического действия токов короткого замыкания

1.4.14. Усилия, действующие на жесткие шины и передающиеся ими на изоляторы и поддерживающие жесткие конструкции, следует рассчитывать по наибольшему мгновенному значению тока трехфазного КЗ ip с учетом сдвига между токами в фазах и без учета механических колебаний шинной конструкции. В отдельных случаях (например, при предельных расчетных механических напряжениях) могут быть учтены механические колебания шин и шинных конструкций.

Импульсы силы, действующие на гибкие проводники и поддерживающие их изоляторы, выводы и конструкции, рассчитываются по среднеквадратическому (за время прохождения) току двухфазного замыкания между соседними фазами. При расщепленных проводниках и гибких токопроводах взаимодействие токов КЗ в проводниках одной и той же фазы определяется по действующему значению тока трехфазного КЗ.

Гибкие токопроводы должны проверяться на схлестывание.

1.4.15. Найденные расчетом в соответствии с 1.4.14 механические усилия, передающиеся при КЗ жесткими шинами на опорные и проходные изоляторы, должны составить в случае применения одиночных изоляторов не более 60% соответствующих гарантийных значений наименьшего разрушающего усилия; при спаренных опорных изоляторах — не более 100% разрушающего усилия одного изолятора.

При применении шин составных профилей (многополосные, из двух швеллеров и т. д.) механические напряжения находятся как арифметическая сумма напряжений от взаимодействия фаз и взаимодействия элементов каждой шины между собой.

Наибольшие механические напряжения в материале жестких шин не должны превосходить 0,7 временного сопротивления разрыву по ГОСТ.

Выбор проводников по условиям нагрева при коротком замыкании

1.4.16. Температура нагрева проводников при КЗ должна быть не выше следующих предельно допустимых значений, °С:

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector