Gc-helper.ru

ГК Хелпер
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Горячее состояние автоматического выключателя

Мифы и легенды об АКПП: развенчиваем популярные заблуждения

На дворе уже 21 век, а старая добрая АКПП все еще окружена мифами. Кроме того, эти мифы плодятся с невероятной скоростью. Наверное, это связано с тем, что автомобили c «автоматом» у нас набирают популярность, и многие водители впервые сталкиваются с этим агрегатом.

В статье мы будем развенчивать мифы, а если Вам, дорогой читатель, статья понравится, напишем про легенды. Про то, что когда-то было актуальным или актуально до сих пор. Обращаем внимание, что под аббревиатурой «АКПП» мы имеем ввиду автоматическую коробку с гидротрансформатором и планетарными передачами, она же — гидромеханическая, то есть «классическая» АКПП.

Мы, пожалуй, не будем останавливаться подробно на устройстве типичной АКПП, благо совсем недавно писал исчерпывающую статью о гидротрансформаторе и чуть ранее – о проблемах электрики.

Миф 1. Масляное голодание

Почему-то распространено мнение, что масляный насос АКПП приводится в действие от турбины (выхода) гидротрансформатора. На самом деле, привод насоса соединен с корпусом гидространсформатора, то есть, фактически, с маховиком двигателя, поэтому насос будет нагнетать давление в систему сразу после того, как мотор начинает вращаться, и масло будет прокачиваться в системе при любом режиме работы коробки. Поэтому масляного голодания в исправной коробке не бывает ни в каких режимах.

Миф 2. Ужасная N

Миф 3. Прогрев АКПП

Миф 4. Автомобиль с АКПП не тормозит двигателем

Миф 5. Классические АКПП скоро не будут производиться.

Данная статья написана в рамках Конкурса авторов — 2015. Лучшие работы читайте здесь .

Организаторы конкурса:

Читайте также:

Для комментирования вам необходимо авторизоваться

И почему это ДСГ не может обойтись без сцепления (теоретически)? Если и сейчас при определенном опыте в МКПП можно менять передачи и без сцепления (настоятельно рекомендую не пробовать).

А вообще все верно кроме 5го мифа. Уходят они из массового сегмента в нишу автомобилей с огромным крутящим моментом.

потому что гидротрансформатор глушит переходные моменты и там передачи не жестко переключаются .

передачи в планетарной коробке переключаются плавно за счет плавности включения самого фрикциона, ГДТ тут вообще не при делах

ну я бы поспорил, как минимум, за нейтраль, и о прогреве пару строк можно добавить, важных

Мифы возникали на почве некачественного обслуживания и ремонта АКПП. В связи с развитием профильных сервисов, подобные заблуждения канули в лету.

Отличная статья,написано очень грамотно.Браво.

Офигительная статья. Автору спасибо. Грамотно и доходчиво.

А теперь пусть расскажет о мозгах АКПП и как они адаптируются к типу вождения. и как влияет на такие АКПП переход из нейтрали в драйв и тапок в пол.

Отличная статья! С большим интересом прочитал 🙂 спасибо!

Отличная статья! С большим интересом прочитал 🙂 спасибо!

Ну тупари . не ездить накатом по безопасности . совсем тупорылые . каждым сам разберется в своей безопасности . нам нужны технические свойства

Статья шикарна. Все подробно и по делу. Люблю вот на такие ресурсы заглядывать, много полезного для себя подчеркиваешь. Но не стоит забывать и про форумы https://info-akpp.ru, на которых так же есть специалисты, готовые оперативно помочь в любой сложившейся ситуации, хоть и удаленно. Пусть не всегда помочь, но подсказать уж точно.

Согласен с id437914745, только без «тупарей» (опытом делиться надо без оскорблений). Автору не стоило к одному мифу другие добавлять. «Последний момент: не стоит ехать накатом без включенной передачи, но не из-за пресловутого масляного голодания – его-то как раз не будет. Просто по соображениям безопасности – не успеете среагировать на внезапно возникшее препятствие».

  1. Создается впечатление, что препятствия внезапно возникают только на нейтралке.
  2. Ни рыбы, ни птицы не читали про «соображения безопасности»: и скользят, и парят себе в удовольствие. Велосипедиста не заставишь зря крутить педали, если велик сам катится. Примеров наката в природе много: зря что ли Ньютон инерцию открывал?
  3. «… ехать накатом без включенной передачи…» — масло масляное.

Задание автору для следующей статьи, чтобы победить в Конкурсе авторов. По пунктам расписать, что происходит при снятии машины с паркинга, ответив на вопросы: 1) зачем нажимать тормоз; 2) зачем нажимать кнопку на рычаге; По пунктам расписать, что происходит в трансмиссии при остановке автомобиля педалью тормоза на «D» или на «R», ответив на вопросы: 1) как сцепление (или что там в АКПП?) узнает, что пора разъединить двигатель с колесами; 2) какие выключатели, датчики или клапаны в коробке или на колесах при этом задействуются; 3) какие кнопки включает и выключает конкретно педаль тормоза (кроме включателя стоп-сигналов); По пунктам расписать, что происходит в трансмиссии при остановке ручником, ответив на вопросы: 1) как сцепление (или что там в АКПП?) узнает, что пора разъединить двигатель с колесами; 2) какие выключатели, датчики или клапаны в коробке или на колесах при этом задействуются; 3) какие кнопки включает и выключает конкретно рычаг ручника; По пунктам расписать, есть ли принципиальная разница для «мозгов» коробки или «мозгов» двигателя в том, каким образом происходит остановка машины: 1) от нажатия педали тормоза; 2) от затягивания ручника; 3) из-за препятствия (движок не тянет на подъем или при упоре в камень на режимах «D» или «R»); 4) по-разному ли ведет себя трансмиссия в зависимости от способа или причины остановки;

Конечный автомат: теория и реализация

Конечный автомат — это некоторая абстрактная модель, содержащая конечное число состояний чего-либо. Используется для представления и управления потоком выполнения каких-либо команд. Конечный автомат идеально подходит для реализации искусственного интеллекта в играх, получая аккуратное решение без написания громоздкого и сложного кода. В данной статье мы рассмотрим теорию, а также узнаем, как использовать простой и основанный на стеке конечный автомат.

Мы уже публиковали серию статей по написанию искусственного интеллекта при помощи конечного автомата. Если вы еще не читали эту серию, то можете сделать это сейчас:

Примечание автора Хоть в статье используются ActionScript 3 и Flash, вы с легкостью можете писать на удобном для вас языке.

Читать еще:  3 х фазный выключатель со встроенной защитой

Что такое конечный автомат?

Конечный автомат (или попросту FSM — Finite-state machine) это модель вычислений, основанная на гипотетической машине состояний. В один момент времени только одно состояние может быть активным. Следовательно, для выполнения каких-либо действий машина должна менять свое состояние.

Конечные автоматы обычно используются для организации и представления потока выполнения чего-либо. Это особенно полезно при реализации ИИ в играх. Например, для написания «мозга» врага: каждое состояние представляет собой какое-то действие (напасть, уклониться и т. д.).

Описание состояний автомата

Конечный автомат можно представить в виде графа, вершины которого являются состояниями, а ребра — переходы между ними. Каждое ребро имеет метку, информирующую о том, когда должен произойти переход. Например, на изображении выше видно, что автомат сменит состояние «wander» на состояние «attack» при условии, что игрок находится рядом.

Планирование состояний и их переходов

Реализация конечного автомата начинается с выявления его состояний и переходов между ними. Представьте себе конечный автомат, описывающий действия муравья, несущего листья в муравейник:

Описание состояний интеллекта муравья

Отправной точкой является состояние «find leaf», которое остается активным до тех пор, пока муравей не найдет лист. Когда это произойдет, то состояние сменится на «go home». Это же состояние останется активным, пока наш муравей не доберется до муравейника. После этого состояние вновь меняется на «find leaf».

EPAM , Москва, Санкт-Петербург, можно удалённо , По итогам собеседования

Если состояние «find leaf» активно, но курсор мыши находится рядом с муравьем, то состояние меняется на «run away». Как только муравей будет в достаточно безопасном расстоянии от курсора мыши, состояние вновь сменится на «find leaf».

Обратите внимание на то, что при направлении домой или из дома муравей не будет бояться курсора мыши. Почему? А потому что нет соответствующего перехода.

Описание состояний интеллекта муравья. Обратите внимание на отсутствие перехода между «run away» и «go home»

Реализация простого конечного автомата

Конечный автомат можно реализовать при помощи одного класса. Назовем его FSM. Идея состоит в том, чтобы реализовать каждое состояние как метод или функцию. Также будем использовать свойство activeState для определения активного состояния.

Всякое состояние есть функция. Причем такая, что она будет вызываться при каждом обновлении кадра игры. Как уже говорилось, в activeState будет храниться указатель на функцию активного состояния.

Метод update() класса FSM должен вызываться каждый кадр игры. А он, в свою очередь, будет вызывать функцию того состояния, которое в данный момент является активным.

Метод setState() будет задавать новое активное состояние. Более того, каждая функция, определяющая какое-то состояние автомата, не обязательно должна принадлежать классу FSM — это делает наш класс более универсальным.

Использование конечного автомата

Давайте реализуем ИИ муравья. Выше мы уже показывали набор его состояний и переходов между ними. Проиллюстрируем их еще раз, но в этот раз сосредоточимся на коде.

Описание состояний интеллекта муравья, сосредоточенное на коде

Наш муравей представлен классом Ant, в котором есть поле brain. Это как раз экземпляр класса FSM.

Класс Ant также содержит свойства velocity и position. Эти переменные будут использоваться для расчета движения с помощью метода Эйлера. Функция update() вызывается при каждом обновлении кадра игры.

Для понимания кода мы опустим реализацию метода moveBasedOnVelocity(). Если хотите узнать поподробнее на тему движения, прочитайте серию статей Understanding Steering Behaviors.

Ниже приводится реализация каждого из методов, начиная с findLeaf() — состояния, ответственного за поиск листьев.

Состояние goHome() — используется для того, чтобы муравей отправился домой.

И, наконец, состояние runAway() — используется при уворачивании от курсора мыши.

Улучшение FSM: автомат, основанный на стеке

Представьте себе, что муравью на пути домой также нужно убегать от курсора мыши. Вот так будут выглядеть состояния FSM:

Обновленное описание состояний интеллекта муравья

Кажется, что изменение тривиальное. Нет, такое изменение создает нам проблему. Представьте, что текущее состояние это «run away». Если курсор мыши отдаляется от муравья, что он должен делать: идти домой или искать лист?

Решением такой проблемы является конечный автомат, основанный на стеке. В отличие от простого FSM, который мы реализовали выше, данный вид FSM использует стек для управления состояниями. В верхней части стека находится активное состояние, а переходы возникают при добавлении/удалении состояний из стека.

Конечный автомат, основанный на стеке

А вот и наглядная демонстрация работы конечного автомата, основанного на стеке:

Переходы в FSM, основанном на стеке

Реализация FSM, основанного на стеке

Такой конечный автомат может быть реализован так же, как и простой. Отличием будет использование массива указателей на необходимые состояния. Свойство activeState нам уже не понадобится, т.к. вершина стека уже будет указывать на активное состояние.

Обратите внимание, что метод setState() был заменен на pushState() (добавление нового состояния в вершину стека) и popState() (удаление состояния на вершине стека).

Использование FSM, основанного на стеке

Важно отметить, что при использовании конечного автомата на основе стека каждое состояние несет ответственность за свое удаление из стека при отсутствии необходимости в нем. Например, состояние attack() само должно удалять себя из стека в том случае, если враг был уже уничтожен.

Вывод

Конечные автоматы, безусловно, полезны для реализации логики искусственного интеллекта в играх. Они могут быть легко представлены в виде графа, что позволяет разработчику увидеть все возможные варианты.

Реализация конечного автомата с функциями-состояниями является простым, но в то же время мощным методом. Даже более сложные переплетения состояний могут быть реализованы при помощи FSM.

Хинт для программистов: если зарегистрируетесь на соревнования Huawei Cup, то бесплатно получите доступ к онлайн-школе для участников. Можно прокачаться по разным навыкам и выиграть призы в самом соревновании.

Перейти к регистрации

Семь ошибок при использовании проточных водонагревателей

Содержание

Содержание

Проточные водонагреватели компактны, просты в работе и обслуживании, да и вода в них не кончается. Вот только ошибки подбора, подключения и эксплуатации проточного нагревателя могут легко перечеркнуть все достоинства.

1. Недостаточная мощность

Ошибки с мощностью — самые распространенные при выборе проточных водонагревателей. Человек покупает проточный нагреватель, устанавливает его, и вдруг выясняется, что с приемлемой температурой вода течет только тонюсенькой струйкой. А если открыть кран посильнее, то вода холодная. Это значит, что нагревателю не хватает мощности. Для того, чтобы нормально помыться в душе, нужен расход воды от 7 л/мин. При этом водонагреватель должен за минуту нагреть 7 литров воды от 10 °C до 36. Какая мощность для этого нужна? Вспомним физику за 8 класс.

Читать еще:  Выключатель как рубильник электрической цепи

W — мощность водонагревателя (Вт), c — теплоемкость нагреваемого материала (Дж/кг*К, вода — 4183), m — масса нагреваемой воды (кг), t1 — температура исходная (°C), t2 — температура требуемая (°C), t — время нагрева (сек). Так, для вышеприведенного примера получаем:

12,5 кВт — такого никакая бытовая проводка не выдержит. Нагреватель же мощностью в 3,5 кВт сможет обеспечить только 2 л/мин с температурой 36 °C. Умыться и помыть посуду еще хватит, но принимать душ уже будет некомфортно. Ну и, разумеется, расход только из одного крана.

Но это не значит, что маломощный проточный водонагреватель совершенно бесполезен. Надо просто четко понимать его возможности. Полностью обеспечить квартиру или частный дом горячей водой он не сможет. Чтобы помыть руки или посуду, его будет вполне достаточно. А во время летних отключений он вполне может сгодиться и для душа — летом греть надо меньше: холодная вода прогревается сильнее, да и в душе можно сделать воду попрохладнее.

2. Избыточная мощность

То, что в продаже есть проточные нагреватели мощностью до 27 кВт, не означает, что их можно подключать к обычной розетке. Максимально допустимая суммарная мощность потребителей для квартир составляет 7 кВт — и это только для современных домов с электрическими плитами. В домах с газовыми плитами максимум 4.5 кВт, а в некоторых старых домах — вообще 1.5 кВт! Если установить нагреватель с мощностью выше допустимой, то в лучшем случае выбьет автоматы, а в худшем — случится пожар из-за перегрева проводов или розеток.

Даже если мощность вашего водонагревателя не превышает максимально допустимой, не спешите включать его в первую попавшуюся розетку. Толщины электропроводов по квартире или дому могут быть разными и, соответственно, рассчитанными на различный ток. Минимальное сечение провода в зависимости от мощности можно посмотреть в таблице:

Если вы не уверены, что провод рассчитан на такую нагрузку, проложите новую линию до вводного автомата. Заодно можно будет установить УЗО (если его нет) и убедиться, что заземление не «потерялось» где-нибудь по дороге.

3. Подключить водонагреватель без УЗО

По сравнению с накопительными водонагревателями, ТЭН в проточном водонагревателе не так сильно обрастает накипью и медленнее корродирует, поэтому риск попадания электричества в нагреваемую воду ниже. Но он все равно есть. Чтобы избежать последствий поражения электрическим током, крайне рекомендуется установить УЗО (при его отсутствии) и убедиться в наличии заземления.

4. Подключить водонагреватель к розетке без заземления

Если водонагреватель заземлен, то пробой ТЭНа, скорее всего, приведет к отключению автомата на линии питания. А вот при отсутствии заземления водонагреватель превратится в электрошокер, который сработает, как только вы коснетесь руками крана или текущей из него струи. Да, УЗО отключит ток быстрее, чем водонагреватель вас убьет, но если УЗО нет? А если и есть, вряд ли вы захотите проверять его исправность таким образом.

5. Не учесть давление воды

Максимальное рабочее давление проточных водонагревателей может быть от 4 бар. В загородных домах давление в водопроводе обычно выше и не поднимается, но не в городских квартирах. В городе нормальное давление может достигать 6 бар, а из-за гидроударов во время ремонта или профилактических работ — до 8–10 бар. Водонагреватель с максимальным допустимым давлением в 4–6 бар такого может и не выдержать — это приведет к его поломке. А еще прорвавшая теплообменник вода может попасть на ТЭН и создать опасность поражения электрическим током. Поэтому подбирайте водонагреватель в соответствии с давлением ХВС или ставьте на входе в него редуктор давления.

6. Установить с наклоном или непрочно

Проточный нагреватель, как правило, имеет четко определенное положение эксплуатации. Если установить его неправильно, или он накренится из-за слабого крепления, то часть ТЭНа может оказаться непогруженной в воду. ТЭНы проточных нагревателей мощные, и без контакта с водой раскаляются за считанные секунды. Некоторые водонагреватели имеют защиту от перегрева и от работы «на сухую», но при частичном заполнении защита может и не сработать.

7. Задерживать вытекающую из нагревателя воду

Проточный водонагреватель потому так и называется, что нагревает поток воды. Если водонагреватель не предназначен для встраивания в систему ГВС и имеет свободный выход, но вода по каким-то причинам не вытекает, она быстро нагревается до кипения. А это еще опаснее, чем работа «на сухую», поскольку чревато разрывом корпуса. Некоторые такие водонагреватели оснащены контролем потока и отключаются при его снижении, но не все. Поэтому ни в коем случае нельзя ставить краны на выход простого проточного водонагревателя или каким-либо другим способом ограничивать свободное вытекание воды из него.

Почему выбивает автомат в щитке

Пользователи обычно не затрудняют себя ответом на вопрос, почему выбивает автомат в щитке, а часто меняют его на больший по номиналу аппарат.

Установка автоматического выключателя для защиты проводки

Здесь важно понимать, что устройство служит для защиты проводки, когда возникает короткое замыкание или перегрузка. Если часто выбивает автомат в электрощитке, выбор более мощного не решает проблему. В этом случае нагрузка на проводку увеличивается, и она может перегореть. Поэтому следует, прежде всего, выяснить причины отключения аппарата, которые могут быть следующими:

  1. превышение допустимого нагрузочного тока;
  2. повреждение электропроводки;
  3. неисправный автоматический выключатель: бывает, что он греется просто от неплотно затянутого контакта;
  4. неисправность или короткое замыкание во включенном в сеть электроприборе.

Принцип действия автомата

При рабочем режиме через автоматический выключатель (АВ) протекает номинальный или меньший ток. Отключение происходит при выходе тока за верхнюю границу. Основными частями аппарата являются тепловая и электромагнитная защита с механическим расцепителем.

Читать еще:  Простая электросхема с выключателями

Схема устройства автоматического выключателя

Тепловая защита отключает электрическую цепь при перегрузках. Она выполнена в виде биметаллической пластины, которая греется при протекании по ней тока и деформируется, отключая цепь при выходе за предел. Срабатывание происходит с задержкой. Пороговое напряжение в стандартных приборах составляет 140% от номинального.

Электромагнит включается, когда происходит короткое замыкание. Короткое замыкание создает в катушке соленоида большой ток, и электромагнитное поле втягивает сердечник, действующий на устройство расцепления электрической цепи.

Выбивает автомат из-за перегрузки

Когда отключается автоматический выключатель, прежде всего, надо установить, какая нагрузка подключена в линии, которую он защищает. Если одновременно были включены несколько электроприборов, надо проверить их суммарную мощность и сравнить ее с допустимой. Если она находится в норме, значит, автоматический выключатель не греется.

В быту автоматы подбираются от 3 до 160 А. Эти значения характеризуют допустимую суммарную мощность всех подключенных к цепи потребителей. Автомат защищает, прежде всего, проводку, а также приборы, розетки и выключатели. Ток срабатывания должен быть на 10-15% ниже предельных допускаемых значений для проводов.

После срабатывания автомата нужно выждать несколько минут, пока пластина из биметалла не вернется в исходное положение.

Срабатывание теплового расцепителя можно проверять по температуре корпуса. Если он греется, это можно определить прикосновением руки, значит, отключение было по перегрузке.

Режим «короткое замыкание»

Если выбило автомат при КЗ, это означает, что сработал электромагнит, служащий для мгновенного разрыва электрической цепи. При этом проводка не греется до опасной температуры.

При размыкании силовых контактов появляется электрическая дуга. Чтобы они не разрушились, предусмотрена камера для гашения дуги. Она делается в виде решетки из изолированных друг от друга металлических пластин. На них дуга дробится и гасится.

Дугогасительная камера автоматического выключателя

Перед повторным включением автомата после того, как произошло короткое замыкание, следует найти и устранить его причины.

Ручное расцепление

Кроме автоматического режима автомат может применяться как ручной выключатель. Но основными характеристиками автомата являются параметры автоматического срабатывания. Тип аппарата указывается в виде буквы перед величиной допустимого тока. Устройство используют также для ручной коммутации.

Характеристики автоматов

Автоматы различаются величинами токов срабатывания и характеризуются отношением протекающего тока I к номинальному In.

Значения относительного тока откладываются по оси абсцисс, а по оси ординат откладывается время. На рисунке представлены характеристики наиболее распространенных автоматов В и С.

Схема-график характеристик автоматического выключателя: а – автомат В, б – автомат С

Если выбрать автомат на 10 А, то увеличение тока в 3-5 раз считается как короткое замыкание. При его увеличении до 50 А сработает электромагнитный расцепитель. На рисунке это будет ток, которому соответствует значение 5 на оси абсцисс. Если провести от нее вертикаль до пересечения с кривой, а затем горизонталь до пересечения с осью ординат, можно найти время срабатывания 0,01 сек. При его малой величине короткое замыкание меньше оказывает разрушающее действие на проводку.

Когда в цепи появляется перегрузка до 15 А, то I/In = 15/10 = 1,5. Проведя из этой точки вертикальную линию до пересечения с кривой, можно найти время срабатывания, составляющее 30 сек. В этом случае работает тепловая защита. При правильном подборе сечения проводки ее изоляция за этот временной интервал не расплавится.

На рис. б для автомата С время срабатывания при КЗ будет уже 0,02 сек.

На графиках изображаются по две кривые, где нижняя – характеризует «горячее состояние» автомата, а верхняя – «холодное». Это связано с тем, что срабатывание автомата зависит от окружающей температуры. Чем она ниже, тем дольше он греется перед срабатыванием. Эти колебания не так велики и играют роль только тогда, когда аппарат работает на пределе номинала.

Правильно выбранный автомат не будет создавать ложные срабатывания. Ведь он может отключаться даже при пуске пылесоса, что для хозяина квартиры крайне неудобно. Понятие «время-токовая характеристика» введено для того, чтобы выбирать автоматы с нужной чувствительностью. Для этого устройства с одинаковой мощностью разделяют на типы, в зависимости от разного тока и времени срабатывания:

  1. А – тепловая защита срабатывает, если In превышен в 1,3 раза. Токовая защита срабатывает при I > In в 2 раза со скоростью 0,05 сек. Если при этом электромагнит не сработает, цепь разомкнет тепловая защита, но не раньше, чем за 20-30 сек. Столько времени греется биметаллическая пластина до расцепления сети. Автоматы типа А используются в электросхемах, содержащих полупроводниковые детали, которые разрушаются при небольшом увеличении тока.
  2. B – соленоид отключает цепь при трехкратном увеличении номинала. Быстродействие электромагнитного расцепителя при коротком замыкании составляет 0,015 сек. Тепловая защита при этом сработает через 4-5 сек. Тип В применяется для цепей освещения с небольшими пусковыми токами.
  3. C – наиболее применяемый тип. Срабатывание по КЗ происходит при увеличении тока в 5 раз. Используется в схемах освещения и электроприборах с умеренным пусковым током.
  4. D – тип автомата применяется при больших пусковых токах (для защиты электродвигателей и других активно-индуктивных нагрузок).

В некоторых автоматах защита по перегрузке не нужна. Нагрузка может быть установлена с токовым реле и автомат требуется как защита от КЗ. Он обозначается характеристикой МА.

Подключение автомата для защиты электрической цепи

Любой автомат может пропускать через себя ток, в 1,13 раза превышающий номинальный. Поэтому проводку следует брать с запасом по сечению. При этом диаметр жил следует замерить перед монтажом, поскольку они могут изготавливаться по минимальному допуску.

Характеристики срабатывания устройств защиты разных ступеней сети не должны пересекаться. Необходимо отключать нагрузку прежде, чем любой другой автоматический выключатель, находящийся ближе к цепи питания.

Ответ на вопрос в видео

Представленное видео поделится информацией, почему выбивает автомат в стабилизаторе напряжения и как этого избежать.

Автоматический выключатель защищает электрическую цепь при перегрузках и коротких замыканиях. Выбивает автомат по этим причинам, а также при его неисправности или неправильном выборе. Номинал аппарата выбирается исключительно с целью обеспечения безопасности цепи.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector