Gc-helper.ru

ГК Хелпер
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как определить выход от выключателя

Проходной выключатель или как сделать управление светом из нескольких точек?

ИЩИТЕ ОТВЕТ НА ВОПРОС ?
ЗАДАЙТЕ ЕГО И МЫ ОТВЕТИМ НА НЕГО В БЛИЖАЙШЕЕ ВРЕМЯ

На стене за дверью – это привычный вариант расположения выключателя, но не полный, так как современное управление светом требуется не только на входе в помещение. Мы хотим включить-выключить свет там, где едим, читаем, засыпаем и не только. Например, выключить свет в зале, не выходя из кухни. Чтобы свет не горел зря, существуют схемы управления лампами из нескольких мест. То есть один и тот же светильник (или группа светильников) может включаться и выключаться из нескольких точек. Выключатели для этого нужны особенные. Называются они проходными, дублирующими или перекидными, но это один и тот же тип электрооборудования. Отличаются от обычных большим числом контактов. Соответственно и схема подключения проходного выключателя сложнее. Тем не менее, разобраться можно.

Как выглядит и работает проходной выключатель

Если говорить о лицевой стороне, то отличие единственное: едва заметная стрелочка на клавише вверх и вниз.

Как выглядит проходной одноклавишный выключатель. Видите, есть двойные стрелочки

Если говорить об электрической схеме, все тоже просто: в обычных выключателях только два контакта, в проходных (еще называют перекидными) три контакта, два из которых — общие. В схеме приличествуют всегда два или больше таких устройства, вот при помощи этих общих проводов они и коммутируются.

Разница — в количестве контактов

Принцип работы прост. Изменением положения клавиши вход подключается к одному из выходов. То есть у этих устройств только два рабочих положения:

  • вход соединен с выходом 1;
  • вход соединен с выходом 2.

Никаких других промежуточных положений нет. Благодаря этому все и работает. Так как контакт переключается из одного положения в другое, электрики считают, что правильнее их называть «переключатели». Так что проходной переключатель — это тоже это устройство.

Чтобы не полагаться на наличие или отсутствие стрелочек на клавишах, нужно осмотреть контактную часть. На фирменных изделиях должна быть нанесена схема, позволяющая понять, какого типа оборудование у вас в руках. Она точно есть на изделиях фирм Lezard (Лезард), Legrand (Легранд), Viko (Вико). На китайских экземплярах они часто отсутствуют.

Так выглядит перекидной выключатель с тыла

Если такой схемы нет, смотрите на клеммы (медные контакты в отверстиях): их должно быть три. Но далеко не всегда на недорогих экземплярах та клемма, что стоит одна — это вход. Часто они перепутаны. Чтобы найти где же находится общий контакт, необходимо прозвонить контакты между собой при разных положениях клавиши. Сделать это обязательно, иначе ничего работать не будет, а само устройство может сгореть.

Вам нужен будет тестер или мультиметр. Если есть мультиметр, переводите его в режим звука — он пищит при наличии контакта. Если в наличии стрелочный тестер, прозваниваете на короткое замыкание. Ставите щуп на один из контактов, находите с каким из двух он звонится (прибор пищит или стрелка показывает КЗ — отклоняется вправо до упора). Не меняя положение щупов, изменяете положение клавиши. Если КЗ пропало, один из этих двух — общий. Теперь осталось проверить который. Не переключая клавишу передвигаете один из щупов на другой контакт. Если есть КЗ, то тот контакт, с которого щуп не двигали и есть общий (это вход).

Может станет понятнее, если посмотрите видео о том, как найти вход (общий контакт) для проходного выключателя.

Схема подключения проходного выключателя с двух мест

Такая схема удобна в двухэтажном доме на лестнице, в проходной комнате, в длинном коридоре. Можно применить ее и в спальне — выключать верхний свет у входа и возле кровати (сколько раз приходилось вставать, чтобы его включить/выключить?).

Электрическая схема включения проходного выключателя с 2 мест

Ноль и земля (если есть) заводятся сразу на светильник. Фаза подается на выход первого переключателя, вход второго заводится на свободный провод светильника, выходы двух устройств соединяются между собой.

Глядя на эту схему, несложно понять, как работает проходной выключатель. В том, положении, что на рисунке, светильник включен. Нажав на клавишу любого из устройств, цепь разрываем. Точно также, при выключенном положении, переведя любой из них в другое положение мы замкнем цепь через одну из перемычек и лампа загорится.

Чтобы было понятнее, что и с чем соединять, как прокладывать провода, приведем несколько изображений.

Расключение проводов на проходном выключателе

Если говорить о помещении, то прокладывать провода нужно примерно так, как на фото ниже. По современным правилам все они должны находится на расстоянии 15 см от потолка. Укладываться они могут в монтажные коробы или лотки, концы проводов заводятся в монтажные коробки. Это удобно: при необходимости можно заменить пробитый провод. Также по последним нормам все соединения происходят только в монтажных коробках и при помощи контакторов. Если же делаете скрутки, то лучше их пропаять, а сверху хорошенько замотать изолентой.

Возвратный провод лампы подсоединяется ко выходу второго выключателя. Белым обозначены провода, соединяющие между собой выходы обоих устройств.

Как разводятся провода по помещению

Схема на 3 точки

Чтобы иметь возможность включать/выключать свет с трех мест, необходимо к двум выключателям купить перекрестный (крестовой) переключатель. От описанных ранее он отличается наличием двух входов и двух выходов. Он переключает сразу пару контактов. Как все должно быть организовано, смотрите на рисунке. Если разобрались с тем, что выше, понять эту просто.

Электрическая схема управления лампой с трех точек

Как собрать такую схему? Вот порядок действий:

  1. Ноль (и заземление, если есть) заводится сразу на лампу.
  2. Фаза подключается ко входу одного из проходных выключателей (с тремя входами).
  3. Вход второго подается на свободный провод лампы.
  4. Два выхода одного трехконтактного устройства заводятся на вход перекрестного переключателя (с четырьмя входами).
  5. Два выхода второго трехконтактного устройства заводятся на вторую пару контактов переключателя с четырьмя входами.

Та же схема, но уже в другом ракурсе — куда подключать провода на корпусах.

Куда подключать провода

А вот примерно так разводить по помещению.

Проводка при управлении лампой из трех мест

Если вам нужна схема на четыре, пять и боле точек, то отличается она только количеством перекрестных переключателей (на четыре входа/выхода). Выключателей (с тремя входами/выходами) всегда в любой схеме два — в самом начале и в самом конце цепи. Все остальные элементы — перекрестные устройства.

Схема подключения проходных выключателей на 5 точек

Уберете один «перекрестник», получите схему управления из четырех точек. Добавите еще — будет уже схема на 6 мест управления.

Оперативные переключения на подстанциях — Последовательность основных операций

Содержание материала

  • Оперативные переключения на подстанциях
  • Оперативные состояния оборудования&title=Организация и порядок переключений
  • Последовательность основных операций
  • Переключения на подстанциях, выполненных по упрощенным схемам
  • Переключения на ПС с двумя системами шин
  • Перевод присоединений с одной системы шин на другую без шиносоединительного выключателя в РУ
  • Вывод в ремонт и ввода в работу после ремонта выключателей электрических цепей

Последовательность основных операций и действий при отключении и включении электрических цепей
Операции с коммутационными аппаратами, установленными в одной электрической цепи, выполняются в последовательности, определяемой назначением этих аппаратов и безопасностью операций для лиц, выполняющих переключения. Кроме того, при правильной последовательности операций предупреждается возникновение аварийных режимов в работе электроустановок, а также повреждений электрооборудования и нарушений электроснабжения потребителей.
При отключении электрической цепи, имеющей выключатели, первой выполняется операция отключения выключателей, при этом разрывается цепь тока и снимается напряжение только с отдельных элементов электрической цепи (линии электропередачи, трансформатора и т.д.). Вводы выключателей могут оставаться под напряжением со стороны сборных шин. Если электрическая цепь выводится в ремонт, то для безопасности работ она отключается и разъединителями. Практикой установлена последовательность отключения разъединителей: сначала отключают линейные (трансформаторные), а затем шинные разъединители. При включении электрической цепи сначала включают шинные на соответствующую систему шин, затем линейные (трансформаторные) разъединители.
Очередность операций с линейными и шинными разъединителями объясняется необходимостью уменьшения последствий повреждений, которые могут иметь место при ошибках персонала. Допустим, что по ошибке отключают под нагрузкой линейные разъединители. Возникшее при этом КЗ устранится автоматическим отключением выключателя линии. Отключение же под нагрузкой шинных разъединителей вызовет отключение сборных шин, и последствия будут более тяжелыми.
В РУ 6-10 кВ закрытого типа, где линейные (кабельные) разъединители располагаются невысоко от пола и не отгорожены от коридора управления сплошной защитной стенкой, операции с ними небезопасны для персонала (например, при ошибочных действиях под нагрузкой). В этом случае целесообразно при отключении линии первыми отключить не линейные, а шинные разъединители, расположенные на большем расстоянии от оператора.
При включении электрической цепи в работу операции с выключателями выполняются в последнюю очередь во всех случаях.
Автоматические устройства (АПВ, АВР и др.) обычно выводятся из работы перед отключением выключателя, на который они воздействуют, а вводятся в работу после включения выключателя. Целесообразно придерживаться единой последовательности операций с автоматическими устройствами, чтобы избежать ошибок.
Включение и отключение электрических цепей (как, впрочем, и другие виды переключений на подстанциях) не исчерпываются знанием очередности операций и умением правильно подавать команды на включение и отключение коммутационных аппаратов. Помимо собственно операций с коммутационными аппаратами необходимы проверки (или выполнение так называемых проверочных действий). Проверки отличаются от операций тем, что выполнением операции изменяется схема электроустановки, режим ее работы, а проверочными действиями схема и режим не изменяются, но дается информация о них. Проверки открывают также возможность безошибочного выполнения каждой последующей операции.
К проверочным действиям относятся проверки режимов работы подстанций и отдельных видов оборудования, проводимые до начала переключений, а также в процессе их выполнения. По результатам таких проверок судят о возможности выполнения переключений; предупреждается возникновение утяжеленных режимов работы оборудования (перегрузок, отклонений значений напряжения от номинального и т.д.).
В процессе переключений должны проверяться нагрузки отключаемых (включаемых) электрических цепей, действительные положения коммутационных аппаратов, стационарных заземлителей (заземляющих ножей), а также отсутствие напряжения на токопроводящих частях перед их заземлением.
Лучшим методом проверок действительных положений коммутационных аппаратов и стационарных заземлителей являются визуальные осмотры положений их контактных систем или осмотры на месте их сигнальных устройств. Аппарат (стационарный заземлитель) каждой фазы должен осматриваться отдельно, независимо от фактического положения аппаратов других фаз и наличия механических связей между ними. Дистанционные включения и отключения выключателей должны контролироваться по показаниям приборов.
Особо отметим, что проверки положений выключателей на месте их установки являются обязательными, если после отключения выключателей должны выполняться операции с разъединителями или отделителями данных электрических цепей.
Проверяется на месте установки, включен ли шиносоединительный выключатель перед началом операций с шинными разъединителями при переводе электрических цепей с одной системы сборных шин на другую. В КРУ отключенное положение выключателя проверяется перед каждой операцией перемещения тележки в шкафу КРУ из рабочего в испытательное положение и наоборот.
Проверку положения выключателя по показаниям сигнальных ламп мнемосхемы и измерительных приборов (амперметров, вольтметров, ваттметров) допускается производить при отключении выключателя электрической цепи без проведения в дальнейшем операций с разъединителями, отключении выключателя электрической цепи с последующим проведением операций с разъединителями при помощи дистанционного привода (здесь имеется в виду, что выключатель и разъединители имеют блокировку, исключающую проведение ошибочной операции), включении под нагрузку линии, трансформатора, при подаче и снятии напряжения с шин. В перечисленных случаях нет необходимости проверять действительное положение выключателя на месте его установки (это затрудняет работу персонала), если по сигнальным лампам и измерительным приборам видно, что операция с выключателем состоялась.
Проверка отсутствия напряжения на токопроводящих частях перед их заземлением является ответственным проверочным действием персонала. На практике все случаи наложения заземлений под напряжением явились результатом отказа от предварительной проверки отсутствия напряжения на заземляемом оборудовании. Такие проверки предусмотрены ПТБ.
Вывод в ремонт линии (рис. 9.1) с учетом проверочных действий проводят в такой последовательности: проверяют возможность отключения линии по режиму работы участка сети (подстанции); на подстанции А отключают выключатель линии и по амперметру проверяют отсутствие нагрузки на линии; на подстанции Б проверяют отсутствие нагрузки на линии и отключают ее выключатель. Затем в РУ проверяют отключенное положение выключателя линии и отключают ее линейные разъединители, проверяют отключение каждой фазы разъединителей; на подстанции А в РУ проверяют, что выключатель линии находится в отключенном положении, после чего отключают линейные разъединители и проверяют положение каждой фазы разъединителей.

Рис. 9.1. Схема включенной в работу линии 110 кВ
После проверки отсутствия напряжения на линии накладывают необходимые защитные заземления с обеих ее сторон. При включении стационарных заземлителей проверяют положение заземлителя каждой фазы.
Перейдем к рассмотрению последовательностей операций с коммутационными аппаратами, устройствами защиты и автоматики при отключении и включении электрических цепей без упоминания проверочных действий, чтобы не перегружать текст частым их повторением. Будут называться лишь характерные проверочные действия, на выполнение которых обращается особое внимание читателей.
При переключениях в реальных условиях выполнение всех проверочных действий должно быть обязательным, а наиболее важные из них (например, проверка отсутствия напряжения на токопроводящих частях перед их заземлением) следует записывать в бланках переключений. Условимся, что координация действий персонала при выполнении операций на смежных подстанциях будет проводиться соответствующим диспетчером.
Отключение и включение воздушных и кабельных линий электропередачи. Последовательность операций при отключении линии (рис. 9.2): отключить устройство АПВ и выключатель линии, линейные, а затем шинные разъединители. При включении линии сначала включают шинные разъединители на соответствующую систему шин, затем линейные разъединители, выключатель и АПВ линии.

Рис. 9.2. Схема присоединения линии 10 кВ
По своему положению в сети воздушные и кабельные линии электропередачи напряжением 6 кВ и выше могут иметь одностороннее и двухстороннее питание. К первым относятся так называемые тупиковые линии, ко вторым транзитные.
Отключение тупиковой линии, как правило, начинают с отключения выключателя на питаемой подстанции, при этом проверяется готовность потребителей к отключению линии. Затем проверяют отсутствие нагрузки на линии и отключают ее выключатель со стороны питающей подстанции. Включение линии под напряжение и нагрузку выполняют в обратной очередности.
Последовательность операций по отключению и включению транзитных линий и линий дальних передач (напряжением 330 кВ и выше) устанавливается диспетчером, учитывающим ряд обстоятельств: состояние схемы сети, надежность питания отдельных подстанций и участков сети при подаче от них напряжения на линию, наличие быстродействующих защит на линиях, конструкцию и тип выключателей и т.д. Отметим, что отключению в ремонт линий дальних передач обычно предшествует выполнение диспетчером комплекса режимных мероприятий: перераспределение перетоков мощности по линиям, изменение уставок релейной защиты, вывод из работы устройств системой автоматики и др.
При включении подачу напряжения на линии связи станций с системой осуществляют, как правило, со стороны системы, так как опробование напряжением линии со стороны станции может привести к отделению ее от системы, если на линии окажется КЗ, а выключатель или защита линии откажет в отключении.
В эксплуатации встречаются линии 6-10 кВ (преимущественно кабельные), спаренные под один выключатель со стороны, питающей их подстанции (рис. 9.3). По линиям может осуществляться питание одной или нескольких абонентских подстанций, часто связанных с другими питающими центрами. По условиям эксплуатации спаренные линии в одно и то же время могут находиться в различных оперативных состояниях: могут быть включены в работу или отключены сразу обе линии, одна из линий может находиться в работе, другая — в ремонте и т.д.

Рис. 9.3. Схема спаренных кабельных линий, находящихся в различных оперативных состояниях: линия W 1 включена; линия W 2 отключена
Включение и отключение одной из спаренных линий, когда другая отключена линейными разъединителями, производится в обычной последовательности, предусмотренной для одиночной линии.
Включение в работу одной из спаренных линий, например W 2 (рис. 9.3), если другая линия W 1 находится в работе, производят с отключением линии, находящейся в работе. Для этого следует отключить выключатель Q 1 работающей линии W 1 со стороны нагрузки (у потребителя), отключить выключатель Q 3 спаренных линий со стороны питания, включить линейные разъединители с обеих сторон включаемой линии W 2, включить выключатель Q 3 со стороны питания, включить выключатели Q 1 и Q 2 обеих линий со стороны нагрузки.
Отключение одной из спаренных линий, когда обе линии включены и несут нагрузку, производят обычно с отключением спаренных линий. Для этого следует отключить выключатели обеих линий со стороны нагрузки, отключить выключатель спаренных линий со стороны питания, отключить линейные разъединители с обеих сторон отключаемой линии, включением выключателя на питающей подстанции подать напряжение на остающуюся в работе линию, замкнуть линию под нагрузку включением ее выключателя у потребителя.
Отключение и включение линейных разъединителей 6-10 кВ одной из спаренных линий без отключения выключателя со стороны питания допускается при зарядном токе линии не более значений, указанных в §3.3, при этом разъединители, а также выключатели нагрузки должны управляться дистанционно.
Отключение и включение силовых трансформаторов и автотрансформаторов. Отключение трехобмоточного трансформатора (или автотрансформатора) выполняют в следующей последовательности: отключают выключатели со стороны низшего, среднего и высшего напряжений, отключают трансформаторные и шинные разъединители со стороны низшего напряжения, а затем в той же последовательности со стороны среднего и высшего напряжений. Строгое соблюдение очередности в отключении разъединителей сначала состороны низшего, а потом среднего и высшего напряжений здесь не является обязательным, очередность отключения может быть иной и зависит от местных условий.
Для включения трансформатора необходимо включить шинные и трансформаторные разъединители с каждой из трех сторон, затем включить выключатели высшего, среднего и низшего напряжений.
Отключение и включение отделителями и разъединителями ненагруженных трансформаторов 110-220 кВ, имеющих неполную изоляцию нейтралей, выполняют при предварительном глухом заземлении нейтрали, если она была разземлена и защищена вентильным разрядником (см. §3.3).
Если к нейтрали обмотки 35 кВ был подключен дугогасящий реактор, то отключение трансформатора следует начинать с отключения дугогасящего реактора. Это устраняет появление опасных перенапряжений в случае неодновременного размыкания контактов выключателя 35 кВ. Особенно опасно отключение от сети обмотки единственного трансформатора подстанции с подключенным к нейтрали дугогасящим реактором или единственной линии, отходящей от подстанции с дугогасящим реактором. На практике неоднократно наблюдались случаи перекрытия изоляции оборудования 35 кВ при различных попытках отключения трансформатора без отключения дугогасящего реактора.

Устройства АПВ, выполненные по принципу несоответствия положения выключателя и его ключа управления, не отключаются при выводе линии в ремонт.

Отгорание нуля, что происходит и как защититься?

Привет, друзья. Сталкивались когда-нибудь с явлением «отгорание нуля»? Если нет, то вы счастливый человек. Но знать об этом, особенно электрикам, будет полезно. Поговорим о том, почему этот таинственный ноль имеет тенденцию отгорать, что происходит при этом и какая бывает защита от отгорания нуля ? Для того чтобы понять это, немного вспомним физику.

Читать еще:  Выключатель автоматический трехполюсный acti 9

Нашел в интернете хорошее видео по теме, коротко и ясно, если не любите читать, смотрите ниже. Итак, начнем.

Ноль, для однофазной цепи, это название проводника, который не находиться под высоким потенциалом относительно земли. Фаза, это второй проводник , она имеет высокий потенциал переменного напряжения относительно земли. В России, чаще всего, это 220-230 Вольт. Ноль при этом не проявляет тенденции к отгоранию.

Основная загвоздка — все линии электропередачи, являются трехфазными. Рассмотрим традиционную схему « звезда »:

Здесь и появляется понятие « нулевой проводник ».

В трех одинаковых нагрузках, переменный ток каждой фазы сдвинут по фазе на 1/3. В идеале, эти токи компенсируют друг друга. При такой нагрузке, в средней точке, векторная сумма токов равна нулю.

Получается, что через нулевой провод, подключенный к средней точке, ток не течет (он практически не нужен).

Незначительный ток на нулевом проводнике все же возникает. Это происходит, когда нагрузки на фазах не полностью компенсируют друг друга, тоесть разные. Прямое доказательство этому можно увидеть на практике, посмотрите на четырехжильные кабели для трехфазных цепей, нулевая жила вдвое меньшего сечения, чем фазные. Зачем тратить дефицитную медь, если тока в жиле практически нет? Имеется смысл…

При сосредоточенной нагрузке, в трехфазной цепи, ноль тоже не расположен к отгоранию.

Интересное начинается тогда, когда к трехфазной цепи начинают подключать однофазные нагрузки (многоквартирных домах, например). Каждая нагрузка представляет случайно выбранное устройство.

При использовании одной фазы из трехфазной цепи, их стараются распределить по мощности так, чтобы на каждую приходилась примерно одинаковая нагрузка.

Все понимают, что полного равенства при этом не достигнуть. Жители дома будут случайным образом включать, выключать электроприборы, поэтому нагрузка будет постоянно меняться. Полной компенсации токов в средней точке происходить не будет, но ток нулевого проводника обычно не достигает максимального значения, большего току в одной из фаз. Ситуация предсказуемая, отгорание нуля при этом бывает крайне редко.

Читать еще:  Пакетный выключатель для чего предназначен для

Почему происходит отгорание нуля?

Сегодня мы регулярно пользуемся большим количеством электрических приборов, большинство из них это импульсные источники питания. Это телевизоры, радиоприемники, компьютеры итд. Характер потребления тока этими приборами сильно отличается от прежних.

В цепи, возникают дополнительные импульсные токи, которые не компенсируются в средней точке. Прибавляем к ним некомпенсированные, вызванные разностью однофазных нагрузок и получаем ток, близкий к самому большому току одной из фаз, или даже превышающий его.

Вот мы и пришли к благоприятным условиям для отгорания нуля. Чаще всего отгорание происходит в слабых местах, где: поврежден провод, занижено сечение кабеля, плохой контакт.

С каждым днем в обиходе появляется все больше электроприборов, соответственно ситуация ухудшается. Поэтому при монтаже электропроводки, необходимо учитывать высокую вероятность отгорания нулевого проводника. Пренебрегать этим не стоит .

Что происходит при отгорании нуля?

В лучшем случае погаснет свет, перестанут работать розетки. О плохом писать не хочется, думаю, понимаете, что перегрузка приводит к нагреву провода, плавке, пробою изоляции итп.

Кроме того, при отгорании нуля, в цепи могут происходить серьезные скачки напряжения. На фазе, где было повышенное потребление, напряжение падает практически до нуля. В то же время, на фазе где потребление было меньше всего, оно вырастает до 380 Вольт. Чувствуете чем пахнет?

Подобное явление может вывести из строя вашу технику !

Что делать, спросите вы? Существует защита.

Защита от отгорания нуля.

Для защиты от вышеуказанных инцестов умные люди придумали реле контроля напряжения . Если напряжение выходит за допустимые пределы, реле отключает его, защищая тем самым все подключенные приборы и оборудование.

Напоследок небольшое видео, где наглядно можно увидеть, что происходит при отгорании нуля.

Такие вот дела. Если есть, что дополнить, оставьте комментарий.

Также советую подписаться на обновления блога , чтобы , получать новые статьи прямо к себе на e-mail.

Статьи по теме:

Теперь вы знаете, что такое отгорание нуля, что происходит при отгорании нуля и какая бывает защита от отгорания нуля.

P.S. Если данная информация оказалась полезной для вас, поделитесь ссылкой с друзьями социальных сетях. Спасибо за внимание.

Читать еще:  Касторама блок розетка выключатель

Комментарии к теме: Отгорание нуля, что происходит и как защититься?

Из личного опыта: техника горит всегда в квартирах где было включено много что в розетки, бывали случаи когда у людей лампы накаливания взрывались над головой, мой совет если свет начинает моргать по всей квартире бить в колокола, а если потребуется и флажковой азбукой электриков звать и искать причину. Если присылают не спеца, а полупьяного «электрика» просите в ЖЭКе другого и ищите причину поверте обойдется дешевле чем ремонт всей техники. И не всегда Управляющая Компания готова это признать и уж тем более оплатить этот ремонт.

Спасибо, Сергей! Как всегда, полезный и интересный комментарий

Как сверлить стену и не повредить электропроводку

Содержание

Содержание

Перед сверлением стен необходимо убедиться, что при выполнении работ не пострадает проводка. Это можно сделать несколькими способами — при помощи схем коммуникаций или специального оборудования (детекторов). Предварительный поиск проводки не отнимет много времени и застрахует от серьезных проблем.

Чем чревато нарушение проводки во время сверления

Многие домашние мастера зря не относят сверление стен к потенциально опасным работам. Беспечность может обернуться целым набором неприятностей:

  • испорченный инструмент;
  • необходимость заново прокладывать кабель;
  • постоянное срабатывание автомата в случае частичного повреждения кабеля или его оболочки;
  • поражение электрическим током;
  • пожар.

Возможны серьезные травмы при падении (вывихи, переломы) и даже летальный исход. Все это нужно учитывать перед тем, как приступить к сверлению стен наудачу.

Как расположена проводка в стенах квартиры

Если во время возведения здания строители придерживались нормативов, проводка в стенах должна располагаться строго вертикально или горизонтально. Процедуру проведения в стенах электрических коммуникаций регламентируют правила из ПУЭ-7 п.7.1.32-58. Они запрещают прокладку провода:

  • по диагонали, по радиусной или ломаной траектории;
  • на расстоянии меньшем 100–150 мм от потолка, пола, углов и дверных или оконных проемов;
  • ближе, чем на 500 мм к радиаторам отопления и газопроводам.

Уважающие себя профессионалы соблюдают при прокладке эти правила, поэтому зоны прохождения коммуникаций определить не так уж сложно. В качестве дополнительных ориентиров можно обратить внимание на распределительные коробки, расположенные под потолком. Именно от них разводят в стороны провода.

Как определить места прокладки проводов

Существует простой и эффективный способ найти провода в стенах — ориентироваться на выключатели и розетки. Провода к этим точкам обычно ведут сверху, поэтому достаточно провести через отмеченные места вертикальные линии. Это и будет наиболее вероятный канал прохождения кабеля в стене. Для страховки можно провести еще и горизонтальные линии через центры коробок для выключателей и розеток. Такой шаг рекомендован в тех случаях, когда на одной стене рядом находятся две розетки.

Как не попасть в кабель при сверлении потолка

При монтаже люстры или потолочного светильника сложно попасть в провод, но иногда это случается. К тому же потолки сверлят не только ради монтажа осветительных приборов. К ним сегодня крепят фланцы барных стоек, крючки для детских спортивных канатов, качелей, крепежи шведских стенок и многое другое. Поэтому поиск проложенного в потолке кабеля — актуальная задача для домашнего мастера.

В большинстве многоквартирных панельных домов потолочные перекрытия возведены с применением бетонных плит с внутренними полостями. Именно через них протягивают кабель. Полости расположены параллельно длинной стороне плиты, поэтому траекторию прокладки кабеля определить легко. К тому же он сам выходит из плиты наружу и служит отличным ориентиром.

Можно отковырять в месте его выхода кусочек шпатлевки или штукатурки, чтобы на 100% исключить возможность контакта кабеля со сверлом. Отверстие в потолке легко потом заделать, но можно и этого не делать — место все равно будет закрыто светильником либо люстрой.

В помещениях с монолитными потолками провод традиционно заводят вертикально сверху, поскольку штробление несущих перекрытий запрещено. Это значит, что достаточно немного отступить от места его выхода. Также не стоит слишком глубоко сверлить потолок, ведь в домах с монолитными потолками провода для светильников проводят по полу вышестоящего этажа.

В частных домах кабель легко обнаружить благодаря следу от штукатурки. Достаточно посветить в разные стороны фонариком и найти при помощи луча света место нахождения канала. Если этот способ не дал результата лучше воспользоваться детектором. Ведь при строительстве частных домов гораздо чаще нарушают нормативы.

Обнаружение кабеля при помощи детектора проводки

После покупки жилья на вторичном рынке можно столкнуться с ситуацией, когда ее бывшие владельцы делали капитальный ремонт и проводили кабели без соблюдения норм из ПУЭ-7 п.7.1.32-58. Да и сами строители не всегда придерживаются этих правил. Поэтому целесообразно подстраховаться и воспользоваться оборудованием, которое позволит быстро и точно найти скрытую проводку.

Речь о детекторах скрытой проводки, которые реагируют на электромагнитное поле. Эти приборы имеют еще названия — бесконтактные индикаторы или тестеры. Они позволяют с точностью до 20 мм определить места прохождения кабелей. Разные приборы отличаются чувствительностью и способны искать провода на глубине от 10 до 100 мм. Этот параметр зависит от модификации детектора. Чем дороже прибор, тем не на большей глубине он способен находить провода.

Для выполнения работ в квартире или частном доме подойдут детекторы с ламповыми индикаторами или ж/к дисплеем. Пользоваться такими тестерами очень просто:

  1. Убедитесь, что исследуемые стены сухие — влажная среда может спровоцировать сбои в работе детектора (некоторые приборы способны работать в условиях повышенной влажности, но об этом должно быть написано в инструкции).
  2. Проверьте работу тестера на проводе под напряжением. Проще всего это сделать при помощи включенного в розетку удлинителя.
  3. Откалибруйте детектор, если у прибора есть такая опция. Это нужно делать на расстоянии около 1 метра от стен.
  4. Отключите работающие в доме или квартире электроприборы: холодильник, кондиционер, компьютер, микроволновую печь и даже телефоны.
  5. Исследуйте детектором участок, на котором планируется сверлить отверстия.

Перед поиском скрытой проводки нельзя отключать электричество на щитке, так как без напряжения в сети невозможно найти кабель.

При обнаружении провода детектор отреагирует предусмотренным производителем образом — подаст звуковой, световой либо другой визуальный сигнал.

Подходит ли портативный металлоискатель для поиска скрытой проводки

Применение металлоискателя для поиска кабелей — плохая идея. Он вместе с проводами будет находить арматуру, саморезы, гвозди и другие металлические предметы. То есть его использование не дает гарантии, что на исследуемом участке стены нет электропроводки.

Дополнительные меры предосторожности при сверлении стен

Поврежденный кабель можно заменить. Хотя эта процедура достаточно трудоемкая и неприятная, ее нельзя сравнить с последствиями от поражения электрическим током. Поэтому перед началом работ нужно подстраховать себя. Для этого достаточно:

  • надеть очки для защиты глаз;
  • не касаться заземленных предметов: водопроводных и отопительных труб;
  • не работать во влажной среде.

Оптимально, если в доме или квартире несколько раздельных линий, индивидуально подключенных к нескольким автоматам. Тогда линию, возле которой планируется выполнять работы, целесообразно на время отключить. Дрель или перфоратор через удлинитель можно подключить к любой другой линии.

Если даже во время работ будет нарушена проводка в стене или потолке, это не приведет к порче инструмента или поражению электрическим током. Свою «везучесть» лучше проверить после сверления. Если после включения автомата, его не выбьет — все в порядке.

Насколько надежны альтернативные методы поиска проводки

Иногда пути прокладки кабеля ищут при помощи смартфона со специальным приложением, приемника, слухового аппарата, обычной индикаторной отвертки, мультиметра и даже компаса.

Ни один из перечисленных методов не подходит для точного обнаружения провода. Их применение ненамного снижает риск попасть в провод при сверлении.

0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты